Trang chủ Lớp 10 Toán lớp 10 Nâng cao (sách cũ) Bài 65 trang 151 SGK Đại số 10 nâng cao, Giải các...

Bài 65 trang 151 SGK Đại số 10 nâng cao, Giải các phương trình và bất phương trình sau:...

Giải các phương trình và bất phương trình sau:. Bài 65 trang 151 SGK Đại số 10 nâng cao - Bài 8: Một số phương trình và bất phương trình quy về bậc hai

Giải các phương trình và bất phương trình sau:

a) |x2 – 5x + 4| = x2 + 6x + 5

b) |x – 1| = 2x – 1

c) |-x2 + x – 1| ≤ 2x + 5

d) |x2 – x|  ≤ |x2 – 1|

Đáp án

a) Điều kiện:

x2+ 6x + 5 ≥ 0 

\( \Leftrightarrow \left[ \matrix{
x \le - 5 \hfill \cr
x \ge - 1 \hfill \cr} \right.\)

Ta có:

\(\eqalign{
& |{x^2} - 5x + 4| = {x^2} + 6x + 5 \cr&\Leftrightarrow \left[ \matrix{
{x^2} - 5x + 4 = {x^2} + 6x + 5 \hfill \cr
{x^2} - 5x + 4 = - {x^2} - 6x - 5 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
- 11x = 1 \hfill \cr
2{x^2} + x + 9 = 0 \hfill \cr} \right. \Leftrightarrow x = - {1 \over {11}} \cr} \)

Ta thấy giá trị x vừa tìm được thỏa mãn điều kiện của đề bài.

Vậy \(S = {\rm{\{  - }}{1 \over {11}}{\rm{\} }}\)

b) Điều kiện: \(x \ge {1 \over 2}\)

Advertisements (Quảng cáo)

Ta có:

\(|x - 1| = 2x - 1 \Leftrightarrow \left[ \matrix{
x - 1 = 2x - 1 \hfill \cr
x - 1 = 1 - 2x \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 0\,\, \hfill \cr
x = {2 \over 3} \hfill \cr} \right.\)

Ta thấy x = 0 không thỏa mãn điều kiện đề bài

Vậy \(S = {\rm{\{ }}{2 \over 3}{\rm{\} }}\)

c) Vì -x2 + x – 1 < 0 với ∀x ∈ R nên:

|-x2 + x – 1| ≤ 2x + 5 ⇔ x2 – x + 1 ≤ 2x + 5

⇔ x2 – 3x + 4 ≤ 0 ⇔ -1 ≤ x ≤ 4

Vậy S = [-1, 4]

d) Ta có:

|x2 – x|  ≤ |x2 – 1|

⇔  (x2 – x)2 – (x2 – 1)2 ≤ 0

⇔ (1 – x)(2x2 – x – 1) ≤  0 ⇔ (x – 1)2(2x + 1) ≥ 0

\( \Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr
2x + 1 \ge 0 \hfill \cr} \right. \Leftrightarrow x \ge - {1 \over 2}\)

Vậy \(S = {\rm{[}} - {1 \over 2}; + \infty )\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)