Trang chủ Lớp 10 Toán lớp 10 Nâng cao (sách cũ) Bài 67 trang 151 SGK Đại số 10 nâng cao, Giải các...

Bài 67 trang 151 SGK Đại số 10 nâng cao, Giải các bất phương trình:...

Giải các bất phương trình:. Bài 67 trang 151 SGK Đại số 10 nâng cao - Bài 8: Một số phương trình và bất phương trình quy về bậc hai

Giải các bất phương trình:

a) \(\sqrt {{x^2} + x - 6}  < x - 1\)

b) \(\sqrt {2x - 1}  \le 2x - 3\)

c) \(\sqrt {2{x^2} - 1}  > 1 - x\)

d) \(\sqrt {{x^2} - 5x - 14}  \ge 2x - 1\)

Đáp án

a) Ta có:

\(\eqalign{
& \sqrt {{x^2} + x - 6} < x - 1\cr& \Leftrightarrow \left\{ \matrix{
{x^2} + x - 6 \ge 0 \hfill \cr
x - 1 > 0 \hfill \cr
{x^2} + x - 6 < {(x - 1)^2} \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
\left[ \matrix{
x \le 3 \hfill \cr
x \ge 2 \hfill \cr} \right. \hfill \cr
x > 1 \hfill \cr
3x < 7 \hfill \cr} \right. \Leftrightarrow 2 \le x < {7 \over 3} \cr} \)

Vậy \(S = {\rm{[}}2,{7 \over 3})\)

Advertisements (Quảng cáo)

b) Ta có:

\(\eqalign{
& \sqrt {2x - 1} \le 2x - 3 \Leftrightarrow \left\{ \matrix{
2x - 1 \ge 0 \hfill \cr
2x - 3 \ge 0 \hfill \cr
2x - 1 \le {(2x - 3)^2} \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
x \ge {1 \over 2} \hfill \cr
x \ge {3 \over 2} \hfill \cr
4{x^2} - 14x + 10 \ge 0 \hfill \cr} \right.\cr& \Leftrightarrow \left\{ \matrix{
x \ge {3 \over 2} \hfill \cr
\left[ \matrix{
x \le 1 \hfill \cr
x \ge {5 \over 2} \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow x \ge {5 \over 2} \cr} \) 

Vậy \(S = {\rm{[}}{5 \over 2}; + \infty )\)

c) Ta có: 

\(\eqalign{
& \sqrt {2{x^2} - 1} > 1 - x \Leftrightarrow \left[ \matrix{
\left\{ \matrix{
1 - x < 0 \hfill \cr
2{x^2} - 1 > 0 \hfill \cr} \right. \hfill \cr
\left\{ \matrix{
1 - x \ge 0 \hfill \cr
2{x^2} - 1 > {(1 - x)^2} \hfill \cr} \right. \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x > 1 \hfill \cr
\left\{ \matrix{
x \le 1 \hfill \cr
{x^2} + 2x - 2 > 0 \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x > 1 \hfill \cr
\left\{ \matrix{
x \le 1 \hfill \cr
\left[ \matrix{
x < - 1 - \sqrt 3 \hfill \cr
x > - 1 + \sqrt 3 \hfill \cr} \right. \hfill \cr} \right. \hfill \cr} \right.\cr& \Leftrightarrow \left[ \matrix{
x < - 1 - \sqrt 3 \hfill \cr
x > - 1 + \sqrt 3 \hfill \cr} \right. \cr} \)

Vậy \(S = ( - \infty , - 1 - \sqrt 3 ) \cup ( - 1 + \sqrt 3 , + \infty )\)

d) Ta có:

\(\eqalign{
& \sqrt {{x^2} - 5x - 14} \ge 2x - 1 \cr
& \Leftrightarrow \left[ \matrix{
\left\{ \matrix{
2x - 1 < 0 \hfill \cr
{x^2} - 5x - 14 \ge 0 \hfill \cr} \right. \hfill \cr
\left\{ \matrix{
2x - 1 \ge 0 \hfill \cr
{x^2} - 5x - 14 \ge {(2x - 1)^2} \hfill \cr} \right. \hfill \cr} \right.\cr& \Leftrightarrow \left[ \matrix{
\left\{ \matrix{
x < {1 \over 2} \hfill \cr
\left[ \matrix{
x \le - 2 \hfill \cr
x \ge 7 \hfill \cr} \right. \hfill \cr} \right. \hfill \cr
\left\{ \matrix{
x \ge {1 \over 2} \hfill \cr
3{x^2} + x + 15 \le 0 \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow x \le - 2 \cr} \) 

Vậy \(S = (-∞, -2]\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)