Trang chủ Lớp 10 Toán lớp 10 (sách cũ) Bài 7 trang 27 hình học lớp 10: Bài 4. Hệ trục...

Bài 7 trang 27 hình học lớp 10: Bài 4. Hệ trục tọa độ...

Bài 7 trang 27 sgk hình học lớp 10: Bài 4. Hệ trục tọa độ. Bài 7. Các điểm A'(-4; 1), B'(2;4), C(2, -2) lần lượt là trung điểm của các cạnh BC, CA và AB của tam giác ABC.

Bài 7. Các điểm \(A'(-4; 1), B'(2;4), C'(2, -2)\) lần lượt là trung điểm của các cạnh \(BC, CA\) và \(AB\) của tam giác \(ABC\). Tính tọa độ đỉnh của tam giác \(ABC\). Chứng minh rằng trọng tâm tam giác \(ABC\) và \(A’B’C’\) trùng nhau.


Giả sử \(A({x_A};{y_A}),B({x_B};{y_B}),C({x_C};{y_C})\)

\(A’\) là trung điểm của cạnh \(BC\) nên \(-4 = \frac{1}{2} (x_B+ x_C)\)

\(\Rightarrow {x_B} + {x_C} =  - 8\)                       (1)

Tương tự ta có \({x_A} + {x_C} = 4\)       (2)

                       \({x_B} + {x_A} = 4\)         (3)  

Giải hệ (1), (2) và (3) ta được:

       \(\left\{ \matrix{
{x_A} = 8 \hfill \cr
{x_B} = - 4 \hfill \cr
x{}_C = - 4 \hfill \cr} \right.\)

Tương tự ta tính được:

      \(\left\{ \matrix{
{y_A} = 1 \hfill \cr
{y_B} = - 5 \hfill \cr
y{}_C = 7 \hfill \cr} \right.\)

Advertisements (Quảng cáo)

Gọi \(G({x_G};y{}_G)\) là trọng tâm của tam giác \(ABC\)

Khi đó ta có:

$$\left\{ \matrix{
{x_G} = {{{x_A} + {x_B} + {x_C}} \over 3} = {{8 - 4 - 4} \over 3} = 0 \hfill \cr
{y_G} = {{{y_A} + {y_B} + y{}_C} \over 3} = {{1 - 5 + 7} \over 3} = {1} \hfill \cr} \right.$$ 

Vậy \(G(0;1)\)  (*)

Gọi \(G'({x_{G’}};y{}_{G’})\) là trong tâm của tam giác \(A’B’C’\)

Khi đó ta có:

$$\left\{ \matrix{
{x_{G’}} = {{{x_{A’}} + {x_{B’}} + {x_{C’}}} \over 3} = {{ - 4 + 2 + 2} \over 3} = 0 \hfill \cr
{y_{G’}} = {{{y_{A’}} + {y_{B’}} + y{}_{C’}} \over 3} = {{1 + 4 - 2} \over 3} = 1 \hfill \cr} \right.$$

Vậy \(G'(0;1)\)  (2*)

Từ (*) và (2*) ta thấy \(G \equiv G’\)

Vậy trọng tâm tam giác \(ABC\) và \(A’B’C’\) trùng nhau.

Bạn đang xem bài tập, chương trình học môn Toán lớp 10 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)