Trang chủ Lớp 11 SBT Toán 11 - Kết nối tri thức Bài 9.10 trang 60 SBT Toán 11 – Kết nối tri thức:...

Bài 9.10 trang 60 SBT Toán 11 - Kết nối tri thức: Cho hàm số \(f\left( x \right) = \frac{x}{{\sqrt {4 - {x^2}} }}\) và \(g\left( x \right) = \frac{1}{x} + \frac{1}{{\sqrt...

Dùng quy tắc tính đạo hàm \(f’\left( x \right), \, \, g’\left( x \right)\) và thay giá trị tương ứng. Phân tích và lời giải - Bài 9.10 trang 60 sách bài tập toán 11 - Kết nối tri thức với cuộc sống - Bài 32. Các quy tắc tính đạo hàm. Cho hàm số \(f\left( x \right) = \frac{x}{{\sqrt {4 - {x^2}} }}\)...

Question - Câu hỏi/Đề bài

Cho hàm số \(f\left( x \right) = \frac{x}{{\sqrt {4 - {x^2}} }}\) và \(g\left( x \right) = \frac{1}{x} + \frac{1}{{\sqrt x }} + {x^2}\). Tính \(f’\left( 0 \right) - g’\left( 1 \right)\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Dùng quy tắc tính đạo hàm \(f’\left( x \right),\,\,g’\left( x \right)\) và thay giá trị tương ứng.

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

Dùng quy tắc tính đạo hàm \(f’\left( x \right),\,\,g’\left( x \right)\) và thay giá trị tương ứng.

Ta có:

\(f’\left( x \right) = \frac{{\sqrt {4 - {x^2}} + \frac{{{x^2}}}{{\sqrt {4 - {x^2}} }}}}{{{{\left( {\sqrt {4 - {x^2}} } \right)}^2}}} = \frac{4}{{\left( {4 - {x^2}} \right)\sqrt {4 - {x^2}} }}\)

\(g’\left( x \right) = - \frac{1}{{{x^2}}} - \frac{1}{{2x\sqrt x }} + 2x\).

Do đó, \(f’\left( 0 \right) = \frac{1}{2},\,\,g’\left( 1 \right) = \frac{1}{2}\) và \(f’\left( 0 \right) - g’\left( 1 \right) = 0\).

Advertisements (Quảng cáo)