Trang chủ Lớp 11 SBT Toán 11 - Kết nối tri thức Bài 9.16 trang 60 SBT Toán 11 – Kết nối tri thức:...

Bài 9.16 trang 60 SBT Toán 11 - Kết nối tri thức: Chuyển động của một hạt trên một dây rung được cho bởi công thức \(s\left( t \right) = 10 + \sqrt 2 \sin \left( {4\pi...

Áp dụng công thức \(v\left( t \right) = s'(t)\) Vận tốc của hạt sau \(t\) giây là. Hướng dẫn giải - Bài 9.16 trang 60 sách bài tập toán 11 - Kết nối tri thức với cuộc sống - Bài 32. Các quy tắc tính đạo hàm. Chuyển động của một hạt trên một dây rung được cho bởi công thức \(s\left( t \right) = 10 + \sqrt 2 \sin \left( {4\pi t + \frac{\pi }{6}} \right)\)...

Question - Câu hỏi/Đề bài

Chuyển động của một hạt trên một dây rung được cho bởi công thức \(s\left( t \right) = 10 + \sqrt 2 \sin \left( {4\pi t + \frac{\pi }{6}} \right)\), trong đó \(s\) tính bằng centimét và \(t\) tính bằng giây. Tính vận tốc của hạt sau \(t\) giây. Vận tốc cực đại của hạt là bao nhiêu? (Làm tròn kết quả đến chữ số thập phân thứ nhất).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Áp dụng công thức \(v\left( t \right) = s'(t)\)

Vận tốc của hạt sau \(t\) giây là: \(v\left( t \right) = s’\left( t \right) = 4\pi \sqrt 2 \cos \left( {4\pi t + \frac{\pi }{6}} \right)\).

Advertisements (Quảng cáo)

Áp dụng tính chất \(\left| {\cos \left( {4\pi t + \frac{\pi }{6}} \right)} \right| \le 1\)

Vận tốc cực đại của hạt là: \({v_{\max }} = 4\pi \sqrt 2 \approx 17,8\,\;{\rm{m}}/{\rm{s}}\), đạt được khi: \(\left| {\cos \left( {4\pi t + \frac{\pi }{6}} \right)} \right| = 1\)

Answer - Lời giải/Đáp án

Vận tốc của hạt sau \(t\) giây là: \(v\left( t \right) = s’\left( t \right) = 4\pi \sqrt 2 {\rm{cos}}\left( {4\pi t + \frac{\pi }{6}} \right)\).

Vận tốc cực đại của hạt là: \({v_{{\rm{max}}}} = 4\pi \sqrt 2 \approx 17,8{\rm{\;m}}/{\rm{s}}\), đạt được khi:\(\left| {{\rm{cos}}\left( {4\pi t + \frac{\pi }{6}} \right)} \right| = 1 \Leftrightarrow 4\pi t + \frac{\pi }{6} = \pi + k\pi \Leftrightarrow t = \frac{5}{{24}} + \frac{k}{4},k \in \mathbb{N}.\)

Advertisements (Quảng cáo)