Trang chủ Lớp 11 SBT Toán 11 Nâng cao Câu 8 trang 114 SBT Hình 11 nâng cao: Tính góc giữa...

Câu 8 trang 114 SBT Hình 11 nâng cao: Tính góc giữa đường thẳng MN với các đường thẳng BC, AB và CD...

Câu 8 trang 114 Sách bài tập Hình học 11 Nâng cao. Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ

Cho hình tứ diện ABCD có tất cả các cạnh bằng m. Các điểm M và N lần lượt là trung điểm của AB và CD.

a) Tính độ dài MN.

b) Tính góc giữa đường thẳng MN với các đường thẳng BC, AB và CD.

 

Đặt \(\overrightarrow {A{\rm{D}}}  = \overrightarrow a ,\overrightarrow {AB}  = \overrightarrow b ,\overrightarrow {AC}  = \overrightarrow c \) .

Khi đó, ta có:

\(\overrightarrow a .\overrightarrow b  = \overrightarrow b .\overrightarrow c  = \overrightarrow c .\overrightarrow a  = {1 \over 2}{m^2}\)  và \({\overrightarrow a ^2} = {\overrightarrow b ^2} = {\overrightarrow c ^2} = {m^2}\)

a) Vì M, N là trung điểm của AB và CD nên

\(\overrightarrow {MN}  = {1 \over 2}\left( {\overrightarrow {A{\rm{D}}}  + \overrightarrow {BC} } \right)\)

hay \(\overrightarrow {MN}  = {1 \over 2}\left( {\overrightarrow a  + \overrightarrow c  – b} \right)\)

Vậy

Quảng cáo

Tức là \(MN = {{m\sqrt 2 } \over 2}\)

b) Ta có

\(\eqalign{  & \overrightarrow {MN} .\overrightarrow {AB}  = {1 \over 2}\left( {\overrightarrow a  + \overrightarrow c  – \overrightarrow b } \right).\overrightarrow b   \cr  &  = {1 \over 2}\left( {\overrightarrow a .\overrightarrow b  + \overrightarrow b .\overrightarrow c  – {{\overrightarrow b }^2}} \right)  \cr  &  = {1 \over 2}\left( {{{{m^2}} \over 2} + {{{m^2}} \over 2} – {m^2}} \right) = 0 \cr} \)

Vậy góc giữa hai đường thẳng MN và AB bằng 90°

Ta có:

Vậy góc giữa hai đường thẳng MN và CD bằng 90°.

Ta có :

Tức là:

\(\left| {\overrightarrow {MN} } \right|.\left| {\overrightarrow {BC} } \right|\cos \left( {\overrightarrow {MN} ,\overrightarrow {BC} } \right) = {1 \over 2}{m^2}\)

Từ đó \(\cos \left( {\overrightarrow {MN} ,\overrightarrow {BC} } \right) = {{{{{m^2}} \over 2}} \over {m.{{m\sqrt 2 } \over 2}}} = {{\sqrt 2 } \over 2}\)

Vậy góc giữa hai đường thẳng MN và BC bằng 45°.

Quảng cáo