Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 5.26 trang 183 sách bài tập Đại số và Giải tích...

Câu 5.26 trang 183 sách bài tập Đại số và Giải tích 11 Nâng cao: Tìm a để phương trình...

Tìm a để phương trình. Câu 5.26 trang 183 sách bài tập Đại số và Giải tích 11 Nâng cao - Bài 3: Đạo hàm của các hàm số lượng giác

Tìm a để phương trình \(f’\left( x \right) = 0\) có nghiệm, biết rằng

                        \(f\left( x \right) = a\cos x + 2\sin x - 3x + 1\)

Với mọi \(x \in R\) ta có

                \(f’\left( x \right) = a\sin x + 2\cos x - 3.\)

Để \(f’\left( x \right) = 0\) có nghiệm thì ta phải tìm a sao cho phương trình \(2\cos x - a\sin x = 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\)   có nghiệm. Ta có

\(\left( 1 \right) \Leftrightarrow {2 \over {\sqrt {{a^2} + 4} }}\cos x - {a \over {\sqrt {{a^2} + 4} }}\sin x = {3 \over {\sqrt {{a^2} + 4} }}\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)

Advertisements (Quảng cáo)

Vì \({\left( {{2 \over {\sqrt {{a^2} + 4} }}} \right)^2} + {\left( {{a \over {\sqrt {{a^2} + 4} }}} \right)^2} = 1\) nên có số \(\alpha \) sao cho\(\left\{ \matrix{\cos \alpha  = {2 \over {\sqrt {{a^2} + 4} }} \hfill \cr\sin \alpha  = {a \over {\sqrt {{a^2} + 4} }} \hfill \cr}  \right.\)

Thế vào (2), ta được : \(\cos x\cos \alpha  - \sin x\sin \alpha  = {3 \over {\sqrt {{a^2} + 4} }}\)

                                    \( \Leftrightarrow \cos \left( {x + \alpha } \right) = {3 \over {\sqrt {{a^2} + 4} \,}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right)\)

Phương trình (3) có nghiệm khi và chỉ khi

\( - 1 \le {3 \over {\sqrt {{a^2} + 4} }} \le 1 \Leftrightarrow 3 \le \sqrt {{a^2} + 4}  \Leftrightarrow {a^2} + 4 \ge 9 \)

\(\Leftrightarrow {a^2} \ge 5 \Leftrightarrow \left| a \right| \ge \sqrt {5} \)

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)