Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 5 trang 6 Sách bài tập Hình Học 11 nâng cao:...

Câu 5 trang 6 Sách bài tập Hình Học 11 nâng cao: Chứng minh rằng tâm đường tròn ngoại tiếp tam giác DNM nằm trên (O;...

Chứng minh rằng tâm đường tròn ngoại tiếp tam giác DNM nằm trên (O; R).. Câu 5 trang 6 Sách bài tập Hình Học 11 nâng cao. - Bài 1 2: Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình

5. Trang 6 Sách bài tập Hình Học 11 nâng cao.

Cho tứ giác ABCD nội tiếp đường tròn (O; R) trong đó AD = R. Dựng các hình bình hành DABM và DACN. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác DNM nằm trên (O; R).

Theo giả thiết ta có:

\(\overrightarrow {AD}  = \overrightarrow {BM}  = \overrightarrow {CN} \)

Vì vậy, phép tịnh tiến theo vecto \(\overrightarrow {AD} \) biến tam giác ABC thành tam giác DMN. Suy ra, nếu O’ là tâm đường tròn ngoại tiếp tam giác DMN thì phép tịnh tiến đó biến O thành O’, tức là:

Advertisements (Quảng cáo)

\(\overrightarrow {OO’}  = \overrightarrow {AD} \)

Do đó:

OO’ = AD = R

Và vì vậy O’ nằm trên (O; R).

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)