Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 7 trang 6 Sách bài tập Hình Học 11 nâng cao:...

Câu 7 trang 6 Sách bài tập Hình Học 11 nâng cao: Viết phương trình ảnh của mỗi đường thẳng sau đây qua phép tịnh tiến...

Viết phương trình ảnh của mỗi đường thẳng sau đây qua phép tịnh tiến T.. Câu 7 trang 6 Sách bài tập Hình Học 11 nâng cao. - Bài 1 2: Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình

7. Trang 6 Sách bài tập Hình Học 11 nâng cao.

Trong mặt phẳng tọa độ Oxy, cho phép tịnh tiến T theo vecto \(\overrightarrow u \left( {1; - 2} \right)\).

a) Viết phương trình ảnh của mỗi đường thẳng sau đây qua phép tịnh tiến T.

i) Đường thẳng a có phương trình \(3x - 5y + 1 = 0\).

ii) Đường thẳng b có phương trình \(2x + y + 100 = 0\)

b) Viết phương trình ảnh của đường tròn \({x^2} + {y^2} - 4x + y - 1 = 0\) qua phép tịnh tiến T.

Biểu thức tọa độ của phép tịnh tiến T là \(\left\{ \matrix{
x’ = x + 1 \hfill \cr
y’ = y - 2 \hfill \cr} \right.\) suy ra: \(x = x’ - 1,\,y = y’ + 2.\)

Advertisements (Quảng cáo)

a) i) Nếu M(x;y) nằm trên đường thẳng a thì \(3x - 5y+1 = 0\)

hay \(3\left( {x’ - 1} \right) - 5\left( {y’ + 2} \right) + 1 = 0 \)

\(\Leftrightarrow 3x’ - 5y’ - 12 = 0\). Điều đó chứng tỏ điểm  thỏa mãn phương trình \(3x - 5y - 12 = 0\). Đó là phương trình ảnh của đường thẳng a.

ii) Đường thẳng b có vecto chỉ phương là \(\overrightarrow u \left( {1; - 2} \right)\) nên phép tịnh tiến T biến b thành chính nó. Vậy ảnh của b cũng có phương trình \(2x + y + 100 = 0\).

b) Nếu \(M\left( {x;y} \right)\) nằm trên đường tròn đã cho thì

\(\eqalign{
& {x^2} + {y^2} - 4x + y - 1 = 0 \cr
& \Leftrightarrow {\left( {x’ - 1} \right)^2} + {\left( {y’ + 2} \right)^2} - 4\left( {x’ - 1} \right) \cr&\;\;\;\;\;+ \left( {y’ + 2} \right) - 1 = 0 \cr
& \Leftrightarrow x{‘^2} + y{‘^2} - 6x’ + 5y’ + 10 = 0 \cr} \)

Như vậy điểm M'(x’;y’) thỏa mãn phương trình \({x^2} + {y^2} - 6x + 5y + 10 = 0\). Đó là phương trình đường tròn ảnh của đường tròn đã cho.

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)