Cho hàm số \(y = \frac{{\left( {m - 1} \right)x - 2}}{{m - 2 - x}}\) (\(m\) là tham số). Tìm điều kiện của \(m\) để đồ thị hàm số đã cho có một nhánh nằm hoàn toàn trong góc phần tư thứ nhất của hệ trục toạ độ \(Oxy\).
‒ Để đồ thị hàm số \(y = \frac{{ax + b}}{{c{\rm{x}} + d}}\left( {a{\rm{d}} - bc \ne 0} \right)\) có một nhánh nằm hoàn toàn trong góc phần tư thứ nhất của hệ trục toạ độ \(Oxy\) thì hàm số nghịch biến, có tiệm cận đứng không nằm bên trái trục \(Oy\) và có tiệm cận ngang không nằm bên dưới trục \(Ox\).
Advertisements (Quảng cáo)
Ta có: \(y’ = \frac{{\left( {m - 1} \right)\left( {m - 2} \right) - \left( { - 2} \right).\left( { - 1} \right)}}{{{{\left( {m - 2 - x} \right)}^2}}} = \frac{{{m^2} - 3m}}{{{{\left( {m - 2 - x} \right)}^2}}}\)
Hàm số có đường thẳng \(x = m - 2\) là tiệm cận đứng và đường thẳng \(y = 1 - m\) là tiệm cận ngang.
Để đồ thị hàm số đã cho có một nhánh nằm hoàn toàn trong góc phần tư thứ nhất của hệ trục toạ độ \(Oxy\) thì hàm số nghịch biến, có tiệm cận đứng không nằm bên trái trục \(Oy\) và có tiệm cận ngang không nằm bên dưới trục \(Ox\), tức là:
\(\left\{ \begin{array}{l}{m^2} - 3m
Do đó không có giáo trị nào của \(m\) để đồ thị hàm số đã cho có một nhánh nằm hoàn toàn trong góc phần tư thứ nhất của hệ trục toạ độ \(Oxy\).