Trang chủ Lớp 12 SBT Toán 12 Nâng cao (sách cũ) Bài 10 trang 224 Sách bài tập Toán Hình 12 NC: Cho...

Bài 10 trang 224 Sách bài tập Toán Hình 12 NC: Cho tam giác ABC vuông ở A...

Cho tam giác ABC vuông ở A. Bài 10 trang 224 Sách bài tập Hình học lớp 12 Nâng cao - Ôn tập cuối năm Hình học

Cho tam giác ABC vuông ở A, AB = c,AC = b. Trên đường thẳng d vuông góc với mp(ABC) tại A, lấy điểm S  bất kì, \(S \ne A\) . Gọi B1, C1 lần lượt là hình chiếu của A trên SB, SC.

1. Xác định tâm của mặt cầu đi qua các điểm A, B, C, B1, C1 và tính bán kính của mặt cầu đó.

2.Cho SA = h, tính tỉ số thể tích của hai tứ diện SA B1C1SABC.

 1.Ta có AC \( \bot \) mp(SAB) nến AC\( \bot \)SB, từ đó SB \( \bot \) B1C tức là \(\widehat {B{B_1}C} = {90^0}\)

Tương tự ta cũng có \(\widehat {B{C_1}C} = {90^0}\). Vậy tâm mặt cầu đi qua B, C, A, B1, C1 là trung điểm O của BC.

Advertisements (Quảng cáo)

Ta có \(AO = {1 \over 2}{\rm{ }}BC,\)

\(B{C^2} = A{B^2} + A{C^2} = {\rm{ }}{b^2} + {\rm{ }}{c^2}.\)

Từ đó bán kính mặt cầu bằng\({{\sqrt {{b^2} + {\rm{ }}{c^2}} } \over 2}.\)   

2. Ta có

\({{{V_{S.A{B_1}{C_1}}}} \over {{V_{S.ABC}}}} = {{SA} \over {SA}}.{{S{B_1}} \over {SB}}.{{S{C_1}} \over {SC}} \)

\(= {{S{B_1}.SB} \over {S{B^2}}}.{{S{C_1}.SC} \over {S{C^2}}} = {{S{A^2}} \over {S{B^2}}}.{{S{A^2}} \over {S{C^2}}} = {{{h^4}} \over {\left( {{h^2} + {c^2}} \right)\left( {{h^2} + {b^2}} \right)}}.\)

Vậy tỉ số thể tích của hai tứ diện \(SA{B_1}{C_1}\) và \(SABC\) bằng \({{{h^4}} \over {({h^2} + {b^2})({h^2} + {c^2})}}.\)

Bạn đang xem bài tập, chương trình học môn SBT Toán 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)