Trang chủ Lớp 12 SBT Toán 12 Nâng cao (sách cũ) Bài 14 trang 7 Sách bài tập Hình học lớp 12 Nâng...

Bài 14 trang 7 Sách bài tập Hình học lớp 12 Nâng cao: Cho tứ diện đều ABCD...

Cho tứ diện đều ABCD . Bài 14 trang 7 Sách bài tập Hình học lớp 12 Nâng cao - Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện

Cho tứ diện đều ABCD và phép dời hình f biến ABCD thành chính nó, nghĩa là biến mỗi đỉnh của tứ diện thành một đỉnh của tứ diện. Tìm tập hợp các điểm M trong không gian sao cho \(M = f\left( M \right)\) trong các trường hợp sau đây:

\(\eqalign{  & a)f\left( A \right) = B,f\left( B \right) = C,f\left( C \right) = A;  \cr  & b)f\left( A \right) = B,f\left( B \right) = A,f\left( C \right) = D;  \cr  & c)f\left( A \right) = B,f\left( B \right) = C,f\left( C \right) = D. \cr} \)

Theo giả thiết \(f\left( A \right) = B\) và \(f\left( B \right) = C,f\left( C \right) = A.\) Bởi vậy \(f\left( M \right) = M\) khi và chỉ khi \(MA = MB = MC.\) Suy ra tập hợp các điểm \(M\) là trục của đường tròn ngoại tiếp tam giác \(ABC\).

Advertisements (Quảng cáo)

b) Theo giả thiết \(f\left( A \right) = B\), \(f\left( B \right) = C,f\left( C \right) = D\). Bởi vậy \(f\left( M \right) = M\) khi và chỉ khi \(MA = MB\) và \(MC = MD,\) tức là M đồng thời nằm trên hai mặt phẳng trung trực của ABCD. Suy ra tập hợp các điểm M là đường thẳng đi qua trung điểm của ABCD.

c) Theo giả thiết \(f\left( A \right) = B\),\(f\left( C \right) = B,f\left( C \right) = A\). Bởi vậy \(f\left( M \right) = M\) khi và chỉ khi  \(MA = MB = MC=MD\).

Suy ra tập hợp các điểm M gồm một điểm duy nhất là trọng tâm của tứ diện ABCD.

Bạn đang xem bài tập, chương trình học môn SBT Toán 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)