Trang chủ Lớp 12 SBT Toán 12 Nâng cao (sách cũ) Bài 32 trang 61 SBT Hình 12 Nâng Cao: Cho hình nón...

Bài 32 trang 61 SBT Hình 12 Nâng Cao: Cho hình nón N có bán kính đáy R,...

Cho hình nón N có bán kính đáy R, . Bài 32 trang 61 Sách bài tập Hình học lớp 12 Nâng cao - Bài 4. Mặt nón hình nón và khối nón

Cho hình nón N có bán kính đáy R, góc giữa đường sinh và đáy của hình nón bằng \(\alpha \). Một mặt phẳng (P) song song với đáy hình nón, cách đáy hình nón một khoảng h và cắt hình nón theo đường tròn (C ).

1) Tính bán kính đường tròn (C ) theo R, h,a.

2) Tính diện tích và thể tích phần hình nón nằm giữa đáy hình nón N và mặt phẳng (P).

1) Gọi đường cao của hình nón là SO, một đường sinh của hình nón là SA thì  \(\widehat {SAO} =\alpha \)

Gọi O’, A’ lần lượt là giao của SO, SA với mp(P) H là hình chiếu của A’ trên OA thì

\(AH = A’H.\cot \alpha  = h.cot\alpha \)

Advertisements (Quảng cáo)

Và bán kính của đường tròn (C ) là

\(R’ = O’A’ = OA - HA = R - h.\cot \alpha .\)

2)

\( \bullet \) Gọi \({S_1}\) là phần diện tích phải tìm, \({S_2}\) là phần diện tích xung quanh hình nón đỉnh S và đáy là (C ). Khi đó \({S_1} = S - {S_2}\) ( S là diện tích xung quanh của hình nón N ), tức là

\(\eqalign{   {S_1} &= \pi R.SA - \pi R’.SA’  \cr  &  = \pi \left( {R.{R \over {\cos \alpha }} - R’.{{R’} \over {\cos \alpha }}} \right)  \cr  &  = {\pi  \over {\cos \alpha }}\left[ {{R^2} - {{(R - h.\cot \alpha )}^2}} \right]  \cr  &  = {\pi  \over {\cos \alpha }}h.\cot \alpha (2R - h.\cot \alpha ) \cr&= {{\pi h} \over {\sin \alpha }}(2R - h.\cot \alpha ). \cr} \)

\( \bullet \) Gọi V1 là phần thể tích cần tìm, V2 là phần thể tích khối nón đỉnh S và đáy là đường tròn (C ). Khi đó

\({V_1} = V - {V_2}\) (V là thể tích hình nón đã cho)

    \(\eqalign{  &  = {1 \over 3}\pi {R^2}.SO - {1 \over 3}\pi R{‘^2}.SO’  \cr  &  = {1 \over 3}\pi ({R^2}.R\tan \alpha  - R{‘^2}.R’\tan \alpha )  \cr  &  = {1 \over 3}\pi \tan \alpha ({R^3} - R{‘^2})  \cr  &  = {1 \over 3}\pi \tan \alpha \left[ {{R^3} - {{(R - h\cot \alpha )}^3}} \right]  \cr  &  = {{\pi h} \over 3}(3{R^2} - 3Rh\cot \alpha  + {h^2}{\cot ^2}\alpha ). \cr} \)

Bạn đang xem bài tập, chương trình học môn SBT Toán 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)