Cho khối lăng trụ tam giác đều ABC.A’B’C’ có chiều cao bằng h và hai đường thẳng AB‘ và BC vuông góc với nhau.
a) Gọi M’ là trung điểm của A’B’. Chứng minh rằng \(AB’ \bot BM’.\)
b) Tính độ dài đoạn thẳng A’B’ theo h.
c) Tính thể tích khối lăng trụ đã cho.
(h.109)
a) Ta có C’M’ \( \bot \) A’B, C’M’ \( \bot \) AA’ => C’M’ \( \bot \) (ABB’A’) => C’M’ \( \bot \) AB.
Advertisements (Quảng cáo)
Mặt khác, theo giả thiết BC’ \( \bot \) AB’, suy ra AB’ \( \bot \) mp(BC’M’).
Do đó AB’ \( \bot \) BM’.
b) Từ kết quả của câu a), ta dễ dàng suy ra
\(\Delta BB’M’\) đồng dạng \( \Delta B’A’A\)
\(\eqalign{ & \Rightarrow {{A’B’} \over {BB’}} = {{A’A} \over {B’M’}} \cr & \Rightarrow A’B’.B’M’ = A’A.BB’ \cr & \Rightarrow {1 \over 2}A’B{‘^2} = {h^2} \cr & \Rightarrow A’B’ = h\sqrt 2 . \cr} \)
c) \({V_{ABC.A’B’C’}} = {S_{A’B’C’}}.AA’\)
\(= {\left( {h\sqrt 2 } \right)^2}.{{\sqrt 3 } \over 4}h = {{\sqrt 3 } \over 2}{h^3}.\)