Trang chủ Lớp 12 SBT Toán 12 Nâng cao (sách cũ) Bài 52 trang 127 Sách bài tập Toán Hình 12 NC: Trong...

Bài 52 trang 127 Sách bài tập Toán Hình 12 NC: Trong không gian Oxyz cho hai điểm...

Trong không gian Oxyz cho hai điểm . Bài 52 trang 127 Sách bài tập Hình học lớp 12 Nâng cao - Bài 2. Phương trình mặt phẳng

Trong không gian Oxyz cho hai điểm \({M_1}({x_1};{y_1};{z_1}),{M_2}({x_2};{y_2};{z_2})\) không nằm trên mặt phẳng \(\left( \alpha  \right):Ax + By + Cz + D = 0.\)

Tìm điều kiện cần và đủ để :

a) Đường thẳng \({M_1}{M_2}\) cắt \(\left( \alpha  \right)\);

b) Đoạn thẳng \({M_1}{M_2}\) cắt \(\left( \alpha  \right)\);

c) Đường thẳng \({M_1}{M_2}\) cắt \(\left( \alpha  \right)\) tại I sao cho Mnằm giữa I và M2.

d) Đường thẳng \({M_1}{M_2}\) cắt \(\left( \alpha  \right)\) tại I sao cho M2 nằm giữa I và M1.

a) Đường thẳng \({M_1}{M_2}\) cắt \(\left( \alpha  \right)\) khi và chỉ khi \(\overrightarrow {{M_1}{M_2}} \) không vuông góc với \(\overrightarrow n \left( {A,B,C} \right)\) \(\overrightarrow n \) là vec tơ pháp tuyến của \(\left( \alpha  \right)\), tức là :

\(\eqalign{  & \overrightarrow {{M_1}{M_2}} .\overrightarrow n  = 0\cr& \Leftrightarrow A({x_2} - {x_1}) + B({y_2} - {y_1}) + C({z_2} - {z_1}) \ne 0  \cr} \)

b) Đoạn thẳng \({M_1}{M_2}\) cắt \(\left( \alpha  \right)\) khi và chỉ khi có một điểm I thuộc\(\left( \alpha  \right)\) và chia đoạn thẳng \({M_1}{M_2}\) theo một tỉ số k<0. Gọi \(\left( {{x_0};{y_0};{z_0}} \right)\) là tọa độ của điểm I, ta có :

\({x_0} = {{{x_1} - k{x_2}} \over {1 - k}},{x_0} = {{{y_1} - k{y_2}} \over {1 - k}},{x_0} = {{{z_1} - k{z_2}} \over {1 - k}}\)

Và \(A{x_0} + B{y_0} + C{z_0} + D = 0\).

Advertisements (Quảng cáo)

\( \Rightarrow A\left( {{{{x_1} - k{x_2}} \over {1 - k}}} \right) + B\left( {{{{y_1} - k{y_2}} \over {1 - k}}} \right) + C\left( {{{{z_1} - k{z_2}} \over {1 - k}}} \right) + D = 0\)

Vì k < 0 nên điều kiện trên tương đương với điều kiện

c) \({M_1}\) nằm giữa I và \({M_2}\) \( \Leftrightarrow I\) chia đoạn \({M_1}{M_2}\) theo tỉ số k mà 0< k <1.

Ta vẫn có điều kiện \(\left(  *  \right)\), nhưng vì 0< k <1 nên điều kiện đó tương đương với điều kiện:

\(0 < {{A{x_1} + B{y_1} + C{z_1} + D} \over {A{x_2} + B{y_2} + C{z_2} + D}} < 1.\)

d) Tương tự như trên, ta có điều kiện :

\(0 < {{A{x_2} + B{y_2} + C{z_2} + D} \over {A{x_1} + B{y_1} + C{z_1} + D}} < 1.\)

Chú ý : Từ kết quả trên ta suy ra kết luận sau:

Hai điểm \({M_1}({x_1};{y_1};{z_1})\) và \({M_2}({x_2};{y_2};{z_2})\) nằm cùng một phía đối với mặt phẳng \(\left( \alpha  \right):Ax + By + Cz + D = 0.\) khi và chỉ khi

Bạn đang xem bài tập, chương trình học môn SBT Toán 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: