Trang chủ Lớp 12 SBT Toán lớp 12 (sách cũ) Bài 2.26 trang 116 Sách bài tập Giải tích 12: Tình đạo...

Bài 2.26 trang 116 Sách bài tập Giải tích 12: Tình đạo hàm của các hàm số đã cho ở bài tập...

Tình đạo hàm của các hàm số đã cho ở bài tập 2.25.. Bài 2.26 trang 116 Sách bài tập (SBT) Giải tích 12 - Bài 4. Hàm số mũ. Hàm số logarit

Tình đạo hàm của các hàm số đã cho ở bài tập 2.25.

a) \(y = {\log _8}({x^2} - 3x - 4)\)                                                

b) \(y = {\log _{\sqrt 3 }}( - {x^2} + 5x + 6)\)

c) \(y = {\log _{0,7}}\frac{{{x^2} - 9}}{{x + 5}}\)                                                        

d) \(y = {\log _{\frac{1}{3}}}\frac{{x - 4}}{{x + 4}}\)

e) \(y = {\log _\pi }({2^x} - 2)\)                                                       

g) \(y = {\log _3}({3^{x - 1}} - 9)\) 

Advertisements (Quảng cáo)

Hướng dẫn làm bài:

a) \(y’ = \frac{{2x - 3}}{{({x^2} - 3x - 4)\ln 8}}\)

b) \(y’ = \frac{{ - 2x + 5}}{{( - {x^2} + 5x + 6)\ln \sqrt 3 }} = \frac{{ - 4x + 10}}{{( - {x^2} + 5x + 6)\ln 3}}\)

c) \(y’ = \frac{{{x^2} + 10x + 9}}{{({x^2} - 9)(x + 5)\ln 0,7}}\)                  

d) \(y’ = \frac{8}{{(16 - {x^2})\ln 3}}\)

e) \(y’ = \frac{{{2^x}\ln 2}}{{({2^x} - 2)\ln \pi }}\)

g) \(y’ = \frac{{{3^{x - 1}}}}{{{3^{x - 1}} - 9}}\).

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)