Trang chủ Lớp 12 SBT Toán lớp 12 (sách cũ) Bài 2.46 trang 133 Sách bài tập Giải tích 12: Cho a...

Bài 2.46 trang 133 Sách bài tập Giải tích 12: Cho a + b = c với a > 0, b > 0....

Cho a + b = c với a > 0, b > 0.. Bài 2.46 trang 133 Sách bài tập (SBT) Giải tích 12 - Ôn tập Chương II - Hàm số lũy thừa. Hàm số mũ và hàm số Lôgarit

Cho a + b = c với a > 0, b > 0.

a) Chứng minh rằng \({a^m} + {b^m} < {c^m}\)  , nếu m > 1.

b) Chứng minh rằng  \({a^m} + {b^m} < {c^m}\)   , nếu 0 < m < 1

Hướng dẫn làm bài:

a) Ta có: \({a^m} + {b^m} < {c^m} \Leftrightarrow {(\frac{a}{c})^m} + {(\frac{b}{c})^m} < 1\)  (1)

Advertisements (Quảng cáo)

Theo đề bài  a + b = c, a > 0, b > 0 nên \(0 < \frac{a}{c} < 1,0 < \frac{b}{c} < 1\) .

Suy ra với m > 1 thì \({(\frac{a}{c})^m} < {(\frac{a}{c})^1};{(\frac{b}{c})^m} < {(\frac{b}{c})^1}\)

Từ đó ta có: \({(\frac{a}{c})^m} + {(\frac{b}{c})^m} < \frac{a}{c} + \frac{b}{c} = 1\)

Vậy  (1) đúng và ta có điều phải chứng minh.

b) Chứng minh tương tự.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)