Trang chủ Lớp 12 SBT Toán lớp 12 (sách cũ) Bài 3.18 trang 179 sách bài tập (SBT) – Giải tích 12:...

Bài 3.18 trang 179 sách bài tập (SBT) - Giải tích 12: Tính I3 và I5....

b) Tính I3 và I5.. Bài 3.18 trang 179 sách bài tập (SBT) - Giải tích 12 - Bài 2. Tích phân

Đặt  \({I_n} = \int\limits_0^{{\pi  \over 2}} {{{\sin }^n}xdx} ,n \in {N^*}\)

a) Chứng minh rằng  \({I_n} = {{n - 1} \over n}{I_{n - 2}},n > 2\)

b) Tính I3 và I5.

Hướng dẫn làm bài

a) Xét với n > 2, ta có:  \({I_n} = \int\limits_0^{{\pi  \over 2}} {{{\sin }^{n - 1}}x.\sin xdx} \)

Dùng tích phân từng phần với   và  , ta có:

Advertisements (Quảng cáo)

\({I_n} = \int\limits_0^{{\pi \over 2}} {{{\sin }^{n - 1}}x\sin xdx}\)

\({= - } \cos x{\sin ^{n - 1}}x\left| {\matrix{{{\pi \over 2}} \cr 0 \cr} } \right. + (n - 1)\int\limits_0^{{\pi \over 2}} {{{\sin }^{n - 2}}x{{\cos }^2}xdx} \)

\( = (n - 1)\int\limits_0^{{\pi  \over 2}} {({{\sin }^{n - 2}}x - {{\sin }^n}x)dx} \)

\(=  (n - 1){I_{n - 2}} - (n - 1){I_n}\)

Vậy \({I_n} = {{n - 1} \over n}{I_{n - 2}}\)

b) \({I_3} = {2 \over 3},{I_5} = {8 \over {15}}\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: