Trang chủ Lớp 12 SBT Toán lớp 12 (sách cũ) Bài 3.19 trang 179 sách bài tập – Giải tích 12: Chứng...

Bài 3.19 trang 179 sách bài tập - Giải tích 12: Chứng minh rằng:...

Chứng minh rằng. Bài 3.19 trang 179 sách bài tập (SBT) - Giải tích 12 - Bài 2. Tích phân

Đặt \({I_{m,n}} = \int\limits_0^1 {{x^m}{{(1 - x)}^n}} dx,m,n \in {N^*}\). Chứng minh rằng:\({I_{m,n}} = {n \over {m + 1}}{I_{m + 1,n - 1}},m > 0,n > 1\)

 Từ đó tính I1,2 và I1,3 .

Hướng dẫn làm bài

Dùng tích phân từng phần với \(u = {(1 - x)^n},dv = {x^m}dx\) , ta được:

Advertisements (Quảng cáo)

\({I_{m,n}} = {{{x^{m + 1}}} \over {m + 1}}{(1 - x)^n}\left| {\matrix{1 \cr 0 \cr} } \right. + {n \over {m + 1}}\int\limits_0^1 {{x^{m + 1}}{{(1 - x)}^{n - 1}}dx} \)

Vậy \({I_{m,n}} = {n \over {m + 1}}\int\limits_0^1 {{x^{m + 1}}} {(1 - x)^{n - 1}}dx \)

\(= {n \over {m + 1}}{I_{m + 1,n - 1}},n > 1,m > 0\) .

\({I_{1,2}} = {1 \over {12}}\)  và \({I_{1,3}} = {1 \over {20}}\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)