Tính các nguyên hàm sau:
a) ∫x(3−x)5dx
b) ∫(2x−3x)2dx
c) ∫x√2−5xdx
d) ∫ln(cosx)cos2xdx
e) ∫xsin2xdx
g) ∫x+1(x−2)(x+3)dx
h) ∫11−√xdx
i) ∫sin3xcos2xdx
k) ∫sin3xcos2xdx
l) ∫sinxcosx√a2sin2x+b2cos2xdx,(a2≠b2)
HD: Đặt u=√a2sin2x+b2cos2x
Hướng dẫn làm bài
a) (3−x)6(3−x7−12)+C .
HD: t = 3 – x
Advertisements (Quảng cáo)
b) 4xln4−26xln6+9xln9+C
c) −8+30x375(2−5x)32+C.
HD: Dựa vào x=−15(2−5x)+25
d) tanx[ln(cosx)+1]−x+C . HD: Đặt u=ln(cosx),dv=dxcos2x
e) −xcotx+ln|sinx|+C . HD: Đặt u=x,dv=dxsin2x
g) 15ln[|x−2|3(x+3)2]+C
HD: Ta có x+1(x−2)(x+3)=35(x−2)+25(x+3)
h) −2(√x+ln|1−√x|)+C.
HD: Đặt t=√x
i) −12(cosx+15cos5x)+C .
HD: sin3x.ccos2x=12(sinx+sin5x)
k) cosx+1cosx+C .
HD: Đặt u = cos x
l) 1a2−b2√a2sin2x+b2cos2x+C