Chứng minh rằng các hàm số F(x) và G(x) sau đều là một nguyên hàm của cùng một hàm số:
a) \(F(x) = {{{x^2} + 6x + 1} \over {2x - 3}}\) và \(G(x) = {{{x^2} + 10} \over {2x - 3}}\)
b) \(F(x) = {1 \over {{{\sin }^2}x}}\) và \(G(x) = 10 + {\cot ^2}x\)
c) \(F(x) = 5 + 2{\sin ^2}x\) và \(G(x) = 1 - \cos 2x\)
Advertisements (Quảng cáo)
Hướng dẫn làm bài
a) Vì \(F(x) = {{{x^2} + 6x + 1} \over {2x - 3}} = {{{x^2} + 10} \over {2x - 3}} + 3 = G(x) + 3\) nên F(x) và G(x) đều là một nguyên hàm của \(f(x) = {{2{x^2} - 6x - 20} \over {{{(2x - 3)}^2}}}\)
b) Vì \(G(x) = 10 + {\cot ^2}x = {1 \over {{{\sin }^2}x}} + 9 = F(x) + 9\) , nên F(x) và G(x) đều là một nguyên hàm của \(f(x) = - {{2\cos x} \over {{{\sin }^3}x}}\)
c) Vì \(F'(x) = (5 + 2{\sin ^2}x)’ = 2\sin 2x\) và \(G'(x) = (1 - \cos 2x)’ = 2\sin 2x\) , nên F(x) và G(x) đều là nguyên hàm của cùng hàm số f(x) = 2sin2x