Trang chủ Lớp 12 SGK Toán 12 - Chân trời sáng tạo Giải mục 1 trang 58,59 Toán 12 tập 1 – Chân trời...

Giải mục 1 trang 58,59 Toán 12 tập 1 - Chân trời sáng tạo: Trong không gian Oxyz, cho hai vectơ, và số m...

Hướng dẫn cách giải/trả lời KP1, TH1, VD1 mục 1 trang 58,59 SGK Toán 12 tập 1 - Chân trời sáng tạo Bài 3. Biểu thức toạ độ của các phép toán vectơ. Biểu thức toạ độ của tổng, hiệu hai vectơ và tích của một số với một vectơ...

Khám phá1

Trả lời câu hỏi Khám phá 1 trang 58

Trong không gian Oxyz, cho hai vectơ , và số m.

a) Biểu d\(\overrightarrow a = ({a_1};{a_2};{a_3})\)iễn từng vectơ \(\overrightarrow a \) và \(\overrightarrow b \) theo ba vectơ \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \)

b) Biểu diễn các vectơ \(\overrightarrow a + \overrightarrow b \), \(\overrightarrow a - \overrightarrow b \), \(m\overrightarrow a \) theo ba vectơ \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \), từ đó suy ra toạ độ của các vectơ \(\overrightarrow a + \overrightarrow b \), \(\overrightarrow a - \overrightarrow b \), \(m\overrightarrow a \)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

\(\overrightarrow i = (1;0;0);\overrightarrow j = (0;1;0);\overrightarrow k = (0;0;1)\). Áp dụng quy tắc nhân vecto với một số và quy tắc cộng trừ 2 vecto

Answer - Lời giải/Đáp án

a) \(\overrightarrow a = ({a_1};{a_2};{a_3}) = {a_1}(1;0;0) + {a_2}(0;0;1) + {a_3}(0;0;1) = {a_1}\overrightarrow i + {a_2}\overrightarrow j + {a_3}\overrightarrow k \)

\(\overrightarrow b = ({b_1};{b_2};{b_3}) = {b_1}(1;0;0) + {b_2}(0;0;1) + {b_3}(0;0;1) = {b_1}\overrightarrow i + {b_2}\overrightarrow j + {b_3}\overrightarrow k \)

b) \(\overrightarrow a + \overrightarrow b = {a_1}\overrightarrow i + {a_2}\overrightarrow j + {a_3}\overrightarrow k + {b_1}\overrightarrow i + {b_2}\overrightarrow j + {b_3}\overrightarrow k = ({a_1} + {b_1})\overrightarrow i + ({a_2} + {b_2})\overrightarrow j + ({a_3} + {b_3})\overrightarrow k = ({a_1} + {b_1};{a_2} + {b_2};{a_3} + {b_3})\)

\(\overrightarrow a - \overrightarrow b = {a_1}\overrightarrow i + {a_2}\overrightarrow j + {a_3}\overrightarrow k - {b_1}\overrightarrow i - {b_2}\overrightarrow j - {b_3}\overrightarrow k = ({a_1} - {b_1})\overrightarrow i + ({a_2} - {b_2})\overrightarrow j + ({a_3} - {b_3})\overrightarrow k = ({a_1} - {b_1};{a_2} - {b_2};{a_3} - {b_3})\)

\(m\overrightarrow a = m({a_1}\overrightarrow i + {a_2}\overrightarrow j + {a_3}\overrightarrow k ) = m{a_1}\overrightarrow i + m{a_2}\overrightarrow j + m{a_3}\overrightarrow k = (m{a_1};m{a_2};m{a_3})\)


Thực hành1

Trả lời câu hỏi Thực hành 1 trang 59

Cho ba vectơ \(\overrightarrow a = (2; - 5;3)\), \(\overrightarrow b = (0;2; - 1)\), \(\overrightarrow b = (1;7;2)\)

a) Tìm toạ độ của vectơ \(\overrightarrow d = 4\overrightarrow a - \frac{1}{3}\overrightarrow b + 3\overrightarrow c \)

b) Tìm toạ độ của vectơ \(\overrightarrow e = \overrightarrow a - 4\overrightarrow b - 2\overrightarrow c \)

Advertisements (Quảng cáo)

c) Chứng minh \(\overrightarrow a \) cùng phương với vectơ \(\overrightarrow m = ( - 6;15; - 9)\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Áp dụng quy tắc nhân vecto với một số và hai vecto \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương khi \(\overrightarrow a = k\overrightarrow b (k \ne 0)\)

Answer - Lời giải/Đáp án

a) \(\overrightarrow d = 4\overrightarrow a - \frac{1}{3}\overrightarrow b + 3\overrightarrow c = 4(2; - 5;3) - \frac{1}{3}(0;2; - 1) + 3(1;7;2) = (11;\frac{{37}}{3};\frac{{55}}{3})\)

b) \(\overrightarrow e = \overrightarrow a - 4\overrightarrow b - 2\overrightarrow c = (2; - 5;3) - 4(0;2; - 1) - 2(1;7;2) = (0; - 27;3)\)

c) Ta có: \( - 3\overrightarrow a = ( - 6;15; - 9) = \overrightarrow m \) nên \(\overrightarrow a \) cùng phương với \(\overrightarrow m \)


Vận dụng1

Trả lời câu hỏi Vận dụng 1 trang 59

Một thiết bị thăm dò đáy biển đang lặn với vận tốc \(\overrightarrow v = (10;8; - 3)\) (Hình 1). Cho biết vận tốc của dòng hải lưu của vùng biển là \(\overrightarrow w = (3,5;1;0)\)

a) Tìm toạ độ của vectơ tổng hai vận tốc \(\overrightarrow v \) và \(\overrightarrow w \)

b) Giả sử thiết bị thăm dò lặn với vận tốc \(\overrightarrow u = (7;2;0)\), hãy nêu nhận xét về vectơ vận tốc của nó so với vectơ vận tốc của dòng hải lưu.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Áp dụng công thức cộng 2 vecto và tính chất 2 vecto cùng phương

Answer - Lời giải/Đáp án

a) \(\overrightarrow v + \overrightarrow w = (13,5;9; - 3)\)

b) Ta có: \(2\overrightarrow w = (7;2;0)\) nên \(\overrightarrow w \) và \(\overrightarrow u \) cùng phương

Advertisements (Quảng cáo)