Trang chủ Lớp 12 Toán lớp 12 Nâng cao (sách cũ) Bài 29 trang 27 SGK Đại số và Giải tích 12 Nâng...

Bài 29 trang 27 SGK Đại số và Giải tích 12 Nâng cao, Xác định đỉnh I của mỗi parabol (P) sau đây. Viết công thức chuyển hệ tọa độ trong phép tịnh tiến theo vectơ và ciết phương...

Xác định đỉnh I của mỗi parabol (P) sau đây. Viết công thức chuyển hệ tọa độ trong phép tịnh tiến theo vectơ và ciết phương trình của parabol (P) đối với hệ tọa độ IXY.. Bài 29 trang 27 SGK Đại số và Giải tích 12 Nâng cao - Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ

Bài 29. Xác định đỉnh \(I\) của mỗi parabol \((P)\) sau đây. Viết công thức chuyển hệ tọa độ trong phép tịnh tiến theo vectơ \(\overrightarrow {OI} \) và viết phương trình của parabol \((P)\) đối với hệ tọa độ \(IXY\).

a) \(y = 2{x^2} - 3x + 1;\)          b) \(y = {1 \over 2}{x^2} - x - 3;\)

c) \(y = x - 4{x^2}\);                    d) \(y = 2{x^2} - 5\);

a) \(y’ = 4x - 3;y’ = 0 \Leftrightarrow x = {3 \over 4};y\left( {{3 \over 4}} \right) =  - {1 \over 8}\)

Đỉnh \(I\left( {{3 \over 4}; - {1 \over 8}} \right)\)

Công thức chuyển trục tọa độ tịnh tiến theo

\(\overrightarrow {OI} :\left\{ \matrix{
x = X + {3 \over 4} \hfill \cr
y = Y - {1 \over 8} \hfill \cr} \right.\)

Phương trình của \((P)\) đối với hệ tọa độ \(IXY\) là

\(Y - {1 \over 8} = 2{\left( {X + {3 \over 4}} \right)^2} - 3\left( {X + {3 \over 4}} \right) + 1 \Leftrightarrow Y = 2{X^2}\)

b) \(y’ = x - 1;y’ = 0 \Leftrightarrow x = 1;y\left( 1 \right) =  - {7 \over 2}\) 

Đỉnh \(I\left( {1; - {7 \over 2}} \right)\)

Công thức chuyển trục tọa độ tịnh tiến theo

\(\overrightarrow {OI} :\left\{ \matrix{
x = 1 + X \hfill \cr
y = - {7 \over 2} + Y \hfill \cr} \right.\)

Advertisements (Quảng cáo)

Phương trình của \((P)\) đối với hệ tọa độ \(IXY\) là

\(Y - {7 \over 2} = {1 \over 2}{\left( {X + 1} \right)^2} - \left( {X + 1} \right) - 3 \Leftrightarrow Y = {1 \over 2}{X^2}\)

c) \(y’ = 1 - 8x;y’ = 0 \Leftrightarrow x = {1 \over 8};y\left( {{1 \over 8}} \right) = {1 \over {16}}\)

Đỉnh \(I\left( {{1 \over 8};{1 \over {16}}} \right)\)

Công thức chuyển trục tọa độ tịnh tiến theo

\(\overrightarrow {OI} :\left\{ \matrix{
x = X + {1 \over 8} \hfill \cr
y = Y + {1 \over {16}} \hfill \cr} \right.\)

Phương trình của \((P)\) đối với hệ tọa độ \(IXY\) là

\(Y + {1 \over {16}} = X + {1 \over 8} - 4{\left( {X + {1 \over 8}} \right)^2} \Leftrightarrow Y =  - 4{X^2}\)

d) \(y’ = 4x;y’ = 0 \Leftrightarrow x = 0;y\left( 0 \right) =  - 5\)

Đỉnh \(I\left( {0; - 5} \right)\)

Công thức chuyển trục tọa độ tịnh tiến theo

\(\overrightarrow {OI} :\left\{ \matrix{
x = X \hfill \cr
y = Y - 5 \hfill \cr} \right.\)

Phương trình của \((P)\) đối với hệ tọa độ \(IXY\) là

\(Y - 5 = 2{X^2} - 5 \Leftrightarrow Y = 2{X^2}\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)