Trang chủ Lớp 12 Toán lớp 12 Nâng cao (sách cũ) Bài 34 Trang 179 SGK Đại số và Giải tích 12 Nâng...

Bài 34 Trang 179 SGK Đại số và Giải tích 12 Nâng cao, Tính diện tích hình phẳng giới hạn bởi:...

Tính diện tích hình phẳng giới hạn bởi. Bài 34 Trang 179 SGK Đại số và Giải tích 12 Nâng cao - Bài 6. Ứng dụng tích phân để tính thể tích vật thể

Bài 34. Tính diện tích hình phẳng giới hạn bởi:

Đồ thị các hàm số \(y = x, y = 1\) và \(y = {{{x^2}} \over 4}\) trong miền \(x \ge 0,y \le 1.\)

b) Đồ thị hai hàm số \(y = {x^4} - 4{x^2} + 4,y = {x^2}\), trục tung và đường thẳng \(x = 1\)

c) Đồ thị các hàm số \(y = {x^2},y = 4x - 4\) và \(y = -4x – 4\).

a)

Diện tích hình thang \(OABC\) là:
\({S_1} = (2 + 1){1 \over 2} = {3 \over 2}\)
Diện tích tam giác cong \(OBC\) là hình phẳng giới hạn bởi: \(y = 0,x = 2,y = {{{x^2}} \over 4}\) là:

\({S_2} = \int\limits_0^2 {{{{x^2}} \over 4}} dx = \left. {{{{x^3}} \over {12}}} \right|_0^2 = {2 \over 3}\)

Diện tích cần tìm là \(S = {S_1} - {S_2} = {3 \over 2} - {2 \over 3} = {5 \over 6}\)
b) Phương trình hoành độ giao điểm của hai đồ thị là:

Advertisements (Quảng cáo)

\({x^4} - 4{x^2} + 4 = {x^2} \Leftrightarrow \left[ \matrix{
{x^2} = 1 \hfill \cr
{x^2} = 4 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = \pm 1 \hfill \cr
x = \pm 2 \hfill \cr} \right.\)

Ta có:

\(\eqalign{
& S = \int\limits_0^1 {\left| {{x^4} - 4{x^2} + 4 - {x^2}} \right|} dx = \int\limits_0^1 {\left| {{x^4} - 5{x^2} + 4} \right|} dx \cr
& = \int\limits_0^1 {({x^4} - 5{x^2}} + 4)dx = \left. {\left( {{{{x^5}} \over 5} - {{5{x^3}} \over 3} + 4x} \right)} \right|_0^1 = {{38} \over {15}} \cr} \)

c)

Phương trình hoành độ giao điểm của đồ thị hàm số \(y = {x^2}\) và đường thẳng \(y = 4x – 4\) là:

\(\eqalign{
& {x^2} = 4x - 4 \Leftrightarrow {x^2} - 4x + 4 = 0 \cr
& \Leftrightarrow {(x - 2)^2} = 0 \Leftrightarrow x = 2. \cr} \)

Phương trình hoành độ giao điểm của đồ thị hàm số \(y = {x^2}\) và đường thẳng
\(y = -4x – 4\) là:

\(\eqalign{
& {x^2} = - 4x - 4 \Leftrightarrow {x^2} + 4x + 4 = 0 \cr
& \Leftrightarrow {(x + 2)^2} = 0 \Leftrightarrow x = - 2. \cr} \)

\(\eqalign{
& S = \int\limits_{ - 2}^0 {({x^2} + 4x + 4)} dx + \int\limits_0^2 {({x^2} - 4x + 4)} dx \cr
& = \left. {\left( {{{{x^3}} \over 3} + 2{x^2} + 4x} \right)} \right|_{ - 2}^0 + \left. {\left( {{{{x^3}} \over 3} - 2{x^2} + 4x} \right)} \right|_0^2 = {8 \over 3} + {8 \over 3} = {{16} \over 3} \cr} \)

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: