Trang chủ Lớp 12 Toán lớp 12 (sách cũ) Bài 7 trang 90 Giải tích 12: Ôn tập Chương 2 –...

Bài 7 trang 90 Giải tích 12: Ôn tập Chương 2 - Giải các phương trình sau...

Bài 7 trang 90 SGK Giải tích 12: Ôn tập Chương II - Hàm số lũy thừa hàm số mũ và hàm số lôgarit. Giải các phương trình sau:

Bài 7. Giải các phương trình sau:

a) \({3^{x + 4}} + {\rm{ }}{3.5^{x + 3}} = {\rm{ }}{5^{x + 4}} + {\rm{ }}{3^{x + 3}}\)

b) \({25^x}-{\rm{ }}{6.5^x} + {\rm{ }}5{\rm{ }} = {\rm{ }}0\)

c) \({4.9^x} + {\rm{ }}{12^x}-{\rm{ }}{3.16^x} = {\rm{ }}0\)

d) \(lo{g_7}\left( {x - 1} \right)lo{g_7}x{\rm{ }} = {\rm{ }}lo{g_7}x\)

e) \({\log _3}x + {\log _{\sqrt 3 }}x + {\log _{{1 \over 3}}}x = 6\)

g) \(\log {{x + 8} \over {x - 1}} = \log x\)

a)

\(\eqalign{
& {3^{x + 4}} + {3.5^{x + 3}} = {5^{x + 4}} + {3^{x + 3}} \cr
& \Leftrightarrow {3^{x + 4}} - {3^{x + 3}} = {5^{x + 4}} - {3.5^{x + 3}} \cr
& \Leftrightarrow {2.3^{x + 3}} = {2.5^{x + 3}} \cr
& \Leftrightarrow {({3 \over 5})^{x + 3}} = 1 \Leftrightarrow x + 3 = 0 \Leftrightarrow x = - 3 \cr} \)

b)  \({25^x}-{\rm{ }}{6.5^x} + {\rm{ }}5{\rm{ }} = {\rm{ }}0\)

Đặt \(t = 5^x\) (\(t > 0\)) \(⇔ x = log_5 t\).

Phương trình đã cho trở thành:

\(t^2– 6t + 5 = 0 ⇔ t ∈ {\rm{\{ }}1;5\} \)

Do đó, phương trình đã cho có nghiệm là \(x = 0, x = 1\)

c) \({4.9^x} + {\rm{ }}{12^x}-{\rm{ }}{3.16^x} = {\rm{ }}0\)

Chia phương trình cho \(16^x\) và đặt \(t = {({3 \over 4})^x}(t > 0) \Leftrightarrow x = {\log _{{3 \over 4}}}t\) ta được phương trình:

Advertisements (Quảng cáo)

\(4t^2+ t – 3 = 0 ⇔ (t+1)(4t-3) = 0\)

Phương trình bậc hai này chỉ có một nghiệm dương \(t = {3 \over 4}\) .

Do đó phương trình đã cho có nghiệm duy nhất là : \(x = {\log _{{3 \over 4}}}{3 \over 4} = 1\)

d) \(lo{g_7}\left( {x - 1} \right)lo{g_7}x{\rm{ }} = {\rm{ }}lo{g_7}x\)

Điều kiện: \(x > 1\) 

\(\eqalign{
& lo{g_7}\left( {x - 1} \right)lo{g_7}x = lo{g_7}x \cr
& \Leftrightarrow {\log _7}x({\log _7}(x - 1) - 1) = 0 \cr
& \Leftrightarrow \left[ \matrix{
{\log _7}x = 0 \hfill \cr
{\log _7}(x - 1) = 1 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr
(x - 1) = 7 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr
x = 8 \hfill \cr} \right. \cr}\)

Kết hợp với điều kiện xác định ta có: \(x = 8\)

Vậy phương trình đã cho có nghiệm là \(x = 8\)

e) \({\log _3}x + {\log _{\sqrt 3 }}x + {\log _{{1 \over 3}}}x = 6\)

Điều kiện : \(x > 0\)

Ta có:

\(\eqalign{
& {\log _3}x + {\log _{\sqrt 3 }}x + {\log _{{1 \over 3}}}x = 6 \cr
& \Leftrightarrow {\log _3}x + {\log _{\sqrt 3 }}x - {\log _3}x = 6 \cr
& \Leftrightarrow {\log _{\sqrt 3 }}x = 6 \Leftrightarrow x = {3^3} \cr
& \Leftrightarrow x = 27 \cr} \)

Vậy phương trình đã cho có nghiệm là: \(x = 27\)

g) \(\log {{x + 8} \over {x - 1}} = \log x\)

Ta có:

\(\eqalign{
& \log {{x + 8} \over {x - 1}} = \log x \Leftrightarrow {{x + 8} \over {x - 1}} = x > 0 \cr
& \Leftrightarrow \left\{ \matrix{
x > 0,x \ne 1 \hfill \cr
{x^2} - 2x - 8 = 0 \hfill \cr} \right. \cr
& \Leftrightarrow x = 4 \cr} \)

Vậy phương trình đã cho có nghiệm là: \(x = 4\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)