Trang chủ Lớp 12 Toán lớp 12 (sách cũ) Câu hỏi 4 trang 108 Giải tích lớp 12:

Câu hỏi 4 trang 108 Giải tích lớp 12:...

Câu hỏi 4 trang 108 SGK Giải tích 12. Bài 2. Tích phân

Cho tích phân \(I = \int\limits_0^1 {{{(2x + 1)}^2}} dx\)

1. Tính \(I\) bằng cách khai triển \({\left( {2x{\rm{ }} + 1} \right)^2}\)

2. Đặt \(u = 2x + 1\). Biến đổi biểu thức \({\left( {2x{\rm{ }} + 1} \right)^2}dx\) thành \(g(u)du\).

3. Tính \(\int\limits_{u(0)}^{u(1)} {g(u)du} \) và so sánh kết quả với \(I\) trong câu 1.

1.

Advertisements (Quảng cáo)

\(\displaystyle \eqalign{
& I = \int\limits_0^1 {{{(2x + 1)}^2}} dx = \int\limits_0^1 {\left( {4{x^2} + 4x + 1} \right)} dx \cr
& = ({4 \over 3}{x^3} + 2{x^2} + x)|_0^1 = {{13} \over 3} \cr} \)

2. Vì \(u = 2x + 1\) nên \(du = 2dx\). Ta có:

\(\displaystyle{(2x + 1)^2}dx = {u^2}{{du} \over 2}\)

3. \(u(1) = 3; u(0) = 1\). Ta có:

\(\displaystyle\int\limits_{u(0)}^{u(1)} {g(u)du = \int\limits_1^3 {{u^2}{{du} \over 2}} }  = {{{u^3}} \over 6}|_1^3 = {{13} \over 3}\)

Vậy \(\displaystyle I = {{13} \over 3}\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: