Trang chủ Lớp 8 SBT Toán 8 - Cánh diều Bài 33 trang 102 SBT Toán 8 – Cánh diều: Cho hình...

Bài 33 trang 102 SBT Toán 8 - Cánh diều: Cho hình bình hành \(ABCD\). Ở phía ngoài hình bình hành, vẽ các hình vuông \(ABEF\) và \(ADGH\) (Hình 26)...

Dựa vào các trường hợp bằng nhau của tam giác và tính chất của hình vuông: Trong một hình vuông. Lời giải bài tập, câu hỏi bài 33 trang 102 sách bài tập toán 8 - Cánh diều - Bài 7. Hình vuông. Cho hình bình hành \(ABCD\). Ở phía ngoài hình bình hành, vẽ các hình vuông \(ABEF\) và \(ADGH\) (Hình 26)....

Question - Câu hỏi/Đề bài

Cho hình bình hành \(ABCD\). Ở phía ngoài hình bình hành, vẽ các hình vuông \(ABEF\) và \(ADGH\) (Hình 26). Chứng minh:

a) \(\Delta AHF = \Delta ADC\)

b) \(AC \bot HF\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Dựa vào các trường hợp bằng nhau của tam giác và tính chất của hình vuông:

Trong một hình vuông,

- Các cạnh đối song song

- Hai đường chéo bằng nhau, vuông góc với nhau và cắt nhau tại trung điểm của mỗi đường.

- Hai đường chéo là các đường phân giác của các góc ở đỉnh.

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

Gọi \(K\) là giao điểm của \(AC\) và \(HF\)

a) Do \(ABEF\) và \(ADGH\) đều là hình vuông nên\(\widehat {BAF} = \widehat {DAH} = 90^\circ ,AH = BA,AH = DA\)

Do \(ABCD\) là hình bình hành nên \(BA = DC\). Suy ra \(AF = DC\)

Ta chứng minh được \(\widehat {HAF} + \widehat {DAB} = 180^\circ \) và \(\widehat {ADC} + \widehat {DAB} = 180^\circ \)

Suy ra \(\widehat {HAF} = \widehat {ADC}\)

Xét hai tam giác \(HAF\) và \(ADC\), ta có: \(AH = DA,\widehat {HAF} = \widehat {ADC},AF = DA\)

Suy ra \(\Delta HAF = \Delta ADC\) (c.g.c)

b) Ta có: \(\widehat {HAK} + \widehat {DAH} + \widehat {DAC} = \widehat {CAK} = 180^\circ \) và \(\widehat {DAH} = 90^\circ \) nên \(\widehat {HAK} + \widehat {DAC} = 90^\circ \)

Mà \(\widehat {AHF} = \widehat {DAC}\) (vì \(\Delta HAF = \Delta ADC\)), suy ra \(\widehat {HAK} + \widehat {AHF} = 90^\circ \)

Trong tam giác \(AHK\), ta có: \(\widehat {AKH} + \widehat {HAK} + \widehat {AHF} = 180^\circ \). Suy ra \(\widehat {AKH} = 90^\circ \)

Vậy \(AK \bot HK\) hai \(AC \bot HF\).