Với số m và số n bất kì, chứng tỏ rằng
a. \({\left( {m + 1} \right)^2} \ge 4m\)
b. \({m^2} + {n^2} + 2 \ge 2\left( {m + n} \right)\)
Advertisements (Quảng cáo)
a. Ta có:
\(\eqalign{ & {\left( {m - 1} \right)^2} \ge 0 \cr & \Leftrightarrow {\left( {m - 1} \right)^2} + 4m \ge 4 \cr & \Leftrightarrow {m^2} - 2m + 1 + 4m \ge 4m \cr & \Leftrightarrow {m^2} + 2m + 1 \ge 4m \cr & \Leftrightarrow {\left( {m + 1} \right)^2} \ge 4m \cr} \)
b. Ta có:
\(\eqalign{ & {\left( {m - 1} \right)^2} \ge 0;{\left( {n - 1} \right)^2} \ge 0 \cr & \Rightarrow {\left( {m - 1} \right)^2} + {\left( {n - 1} \right)^2} \ge 0 \cr & \Leftrightarrow {m^2} - 2m + 1 + {n^2} - 2n + 1 \ge 0 \cr & \Leftrightarrow {m^2} + {n^2} + 2 \ge 2\left( {m + n} \right) \cr} \)