Bài 15. Quy đồng mẫu các phân thức sau:
a) \( \frac{5}{2x +6}, \frac{3}{x^{2}-9}\); b) \( \frac{2x}{x^{2}-8x+16}, \frac{x}{3x^{2}-12x}\)
Hướng dẫn giải:
a) Tìm MTC: 2x + 6 = 2(x + 3)
x2 - 9 = (x -3)(x + 3)
MTC: 2(x - 3)(x + 3) = 2(x2 - 9)
Qui đồng: \( \frac{5}{2x +6}=\frac{5}{2(x+3)}=\frac{5(x-3)}{2(x-3)(x+3)}\)
\( \frac{3}{x^{2}-9}= \frac{3}{(x-3)(x+3)}= \frac{3.2}{2(x-3)(x+3)}=\frac{6}{2(x-3)(x+3)}\)
b) TÌm MTC:
x2 – 8x + 16 = (x – 4)2
3x2 – 12x = 3x(x – 4)
MTC: 3x((x – 4)2
Qui đồng: \( \frac{2x}{x^{2}-8x+16}=\frac{2x}{(x-4)^{2}}=\frac{2x.3x}{3x(x-4)^{2}}=\frac{6x^{2}}{3x(x-4)^{2}}\)
\( \frac{x}{3x^{2}-12}=\frac{x}{3x(x-4)}=\frac{x(x-4)}{3x(x-4)^{2}}\)