Thực hiện các phép tính:
a)\(\left( {{x \over {x + 1}} + 1} \right):\left( {1 - {{3{x^2}} \over {1 - {x^2}}}} \right);\)
b)\(\left( {{x^2} - 1} \right)\left( {{1 \over {x - 1}} - {1 \over {x + 1}} - 1} \right)\)
Hướng dẫn làm bài:
a)\(\left( {{x \over {x + 1}} + 1} \right):\left( {1 - {{3{x^2}} \over {1 - {x^2}}}} \right) = {{x + 1 + 1} \over {x + 1}}:{{1 - {x^2} - 3{x^2}} \over {1 - {x^2}}}\)
\( = {{2x + 1} \over {x + 1}}:{{1 - 4{x^2}} \over {1 - {x^2}}} = {{2x + 1} \over {x + 1}}.{{1 - {x^2}} \over {1 - 4{x^2}}}\)
\( = {{2x + 1} \over {x + 1}}.{{\left( {1 - x} \right)\left( {1 + x} \right)} \over {\left( {1 - 2x} \right)\left( {1 + 2x} \right)}} = {{1 - x} \over {1 - 2x}}\)
b)\(\left( {{x^2} - 1} \right)\left( {{1 \over {x - 1}} - {1 \over {x + 1}} - 1} \right) = \left( {{x^2} - 1} \right).\left[ {{{x + 1 - \left( {x - 1} \right) - \left( {x - 1} \right)\left( {x + 1} \right)} \over {\left( {x - 1} \right)\left( {x + 1} \right)}}} \right]\)
\( = \left( {{x^2} - 1} \right).{{x + 1 - x + 1 - {x^2} + 1} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} = \left( {{x^2} - 1} \right).{{3 - {x^2}} \over {\left( {x - 1} \right)\left( {x + 1} \right)}}\)
\( = {{\left( {x - 1} \right)\left( {x + 1} \right)\left( {3 - {x^2}} \right)} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} = 3 - {x^2}\)