Trang chủ Lớp 9 Tài liệu Dạy - học Toán 9 (sách cũ) Bài 4 trang 102 Tài liệu dạy – học Toán 9 tập...

Bài 4 trang 102 Tài liệu dạy – học Toán 9 tập 2: Cho tam giác đều ABC có cạnh bằng 6 cm....

Bài tập - Chủ đề 3: Tứ giác nội tiếp - Bài 4 trang 102 Tài liệu dạy – học Toán 9 tập 2. Giải bài tập Cho tam giác đều ABC có cạnh bằng 6 cm.

Cho tam giác đều ABC có cạnh bằng 6 cm.

a) Nêu cách vẽ đường tròn ngoại tiếp tam giác ABC

b) Nêu cách vẽ đường tròn nội tiếp tam giác ABC

c) Tính bán kính R và r của đường tròn ngoại tiếp và nội tiếp tam giác ABC.

Tam giác ABC đều nên trọng tâm đồng thời là tâm đường tròn ngoại tiếp và nội tiếp tam giác ABC.

Advertisements (Quảng cáo)

 

a) Xác định trọng tâm O của tam giác ABC, do tam giác ABC đều nên O là tâm đường tròn ngoại tiếp tam giác ABC.

Vẽ đường tròn tâm O bán kính OA.

b) Gọi H là chân đường cao hạ từ A xuống BC. Vẽ đường tròn tâm O bán kính OH, đó là đường tròn nội tiếp tam giác ABC.

c) \(R = OA;\,\,r = OH\).

Gọi H là trung điểm của BC \( \Rightarrow BH = \dfrac{{BC}}{2} = \dfrac{a}{2}\) và \(AH \bot BC\) (trung tuyến đồng thời là đường cao).

Áp dụng định lí Pytago trong tam giác vuông ABH có:

\(A{H^2} = A{B^2} - B{H^2} = {a^2} - {\left( {\dfrac{a}{2}} \right)^2} = \dfrac{{3{a^2}}}{4} \Rightarrow AH = \dfrac{{a\sqrt 3 }}{2}\)

Do O là tâm đường tròn ngoại tiếp tam giác ABC đồng thời là trọng tâm \( \Rightarrow \left\{ \begin{array}{l}OA = \dfrac{2}{3}AH = \dfrac{2}{3}\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3} \Rightarrow R = \dfrac{{a\sqrt 3 }}{3}\\OH = \dfrac{1}{3}AH = \dfrac{1}{3}\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{6} \Rightarrow r = \dfrac{{a\sqrt 3 }}{6}\end{array} \right.\).

 

Bạn đang xem bài tập, chương trình học môn Tài liệu Dạy - học Toán 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)