Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Bài 32 trang 43 SBT Hình 10 nâng cao: (h.38).

Bài 32 trang 43 SBT Hình 10 nâng cao: (h.38)....

Bài 32 trang 43 SBT Hình học 10 Nâng cao. Xét tích vô hướng. Bài 2. Tích vô hướng của hai vec tơ

Trong đường tròn \(C(O ; R)\) cho hai dây cung \(AA’, BB’\) vuông góc với nhau ở điểm \(S\) và gọi \(M\) là trung điểm của \(AB\). Chứng minh rằng \(SM \bot A’B’\).

Giải

(h.38).

 

Xét tích vô hướng

\(\begin{array}{l}\overrightarrow {SM} .\overrightarrow {A’B’}\\  = \dfrac{1}{2}\left( {\overrightarrow {SA}  + \overrightarrow {SB} } \right)\left( {\overrightarrow {SB’}  - \overrightarrow {SA’} } \right)\\ = \dfrac{1}{2}\left( {\overrightarrow {SA} .\overrightarrow {SB’}  - \overrightarrow {SA} .\overrightarrow {SA’}  + \overrightarrow {SB} .\overrightarrow {SB’}  - \overrightarrow {SB} .\overrightarrow {SA’} } \right).\end{array}\)

Advertisements (Quảng cáo)

Ta có

\(\overrightarrow {SA} .\overrightarrow {SB’}  = 0\) do \(SA \bot SB’\),

\(\overrightarrow {SB} .\overrightarrow {SA’}  = 0\) do \(SB \bot SA’\),

\(\overrightarrow {SA} .\overrightarrow {SA’}  = \overrightarrow {SB} .\overrightarrow {SB’} \).

Từ đó suy ra \(\overrightarrow {SM} .\overrightarrow {A’B’}  = 0\), nên \(SM \bot A’B’\).

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)