Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Bài 39 trang 44 Sách bài tập Toán Nâng cao Hình 10:...

Bài 39 trang 44 Sách bài tập Toán Nâng cao Hình 10: (h.45)....

Bài 39 trang 44 SBT Hình học 10 Nâng cao. a) Vẽ đường tròn \((C)\) bất kì đi qua \(P, Q\). Chứng minh rằng trục đẳng phương của \((C)\) và \((I)\) đi qua một điểm cố. Bài 2. Tích vô hướng của hai vec tơ

Cho hai điểm \(P, Q\) nằm ngoài đường tròn \((I)\) cố định với \(IP \ne IQ\).

a) Vẽ đường tròn \((C)\) bất kì đi qua \(P, Q\). Chứng minh rằng trục đẳng phương của \((C)\) và \((I)\) đi qua một điểm cố định.

b) Hãy nêu cách vẽ đường tròn đi qua \(P, Q\) và tiếp xúc với đường tròn \((I)\).

Giải

a) (h.45).

 

Gọi \((C_1)\) là đường tròn cố định có tâm \(O\) và đi qua \(P, Q.\) Do \(I\) không thuộc đường trung trực của \(PQ\) nên trục đẳng phương \(\Delta \) của \((C_1)\) và \((I)\) không song song với \(PQ\), chúng phải cắt nhau ở \(J\).

Bây giờ giả sử \((C)\) là đường tròn bất kì đi qua \(P\) và \(Q\), ta có \(J\) thuộc trục đẳng phương \(PQ\) của \((C)\) và \((C_1)\) nên \({P_{J/(C)}} = {P_{J/({C_1})}}\).

Advertisements (Quảng cáo)

Lại có \(J\) thuộc trục đẳng phương của \((C_1)\) và \((I)\) nên \({P_{J/({C_1})}} = {P_{J/(I)}}\).

Từ đó ta có \({P_{J/(C)}} = {P_{J/(I)}}\), hay \(J\) thuộc trục đẳng phương của \((C)\) và \((I).\)

b) (h.46).

 

Kẻ tiếp tuyến \(JM\) với \((I)\) (\(M\) là tiếp điểm), ta có \(J{M^2} = {P_{J/(I)}}.\)

Do \({P_{J/(I)}} = \overrightarrow {JP} .\overrightarrow {JQ} \) nên đường tròn \((MPQ)\) tiếp xúc với \(JM\) ở \(M\) và cũng tiếp xúc với \((I)\) ở \(M\). Từ đó suy ra cách dựng. Bài toán có hai nghiệm.

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)