a) Tính \(\sin \alpha ,cos\alpha \) theo \(\tan \dfrac{\alpha }{2} = t\)
b) Hãy tính \(\dfrac{{1 - \cos \alpha }}{{\sin \alpha }} + \dfrac{1}{{\tan \alpha }} + 4\sin \alpha \) theo \(\tan \dfrac{\alpha }{2} = t\).
a)
\(\begin{array}{l}\sin \alpha = 2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2}\\ = 2\tan \dfrac{\alpha }{2}{\cos ^2}\dfrac{\alpha }{2} = \dfrac{{2t}}{{1 + {t^2}}}\end{array}\) (giả sử \(\cos \dfrac{\alpha }{2} \ne 0\))
\(\begin{array}{l}\cos \alpha = 2{\cos ^2}\dfrac{\alpha }{2} - 1\\ = \dfrac{2}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} - 1 = \dfrac{{1 - {t^2}}}{{1 + {t^2}}}\end{array}\) (giả sử \(\cos \dfrac{\alpha }{2} \ne 0\))
Advertisements (Quảng cáo)
b) Khi \(\sin \alpha \cos \alpha \ne 0\), ta có
\(\dfrac{{1 - \cos \alpha }}{{\sin \alpha }} + \dfrac{1}{{\tan \alpha }} + 4\sin \alpha = \dfrac{1}{{\sin \alpha }} + 4\sin \alpha \)
Vậy khi \(t = \tan \dfrac{\alpha }{2} \ne 0\) và \({t^2} \ne 1\), ta có
\(\dfrac{{1 - \cos \alpha }}{{\sin \alpha }} + \dfrac{1}{{\tan \alpha }} + 4\sin \alpha = \dfrac{{{t^4} + 18{t^2} + 1}}{{2t\left( {1 + {t^2}} \right)}}\)