Xét hàm số \(y = A\sin \left( {\omega x + \alpha } \right) + B\) (\(A,B,\omega ,\alpha \) là những hằng số, \(A\omega \ne 0\)). Chứng minh:
a) Giá trị lớn nhất và giá trị nhỏ nhất của hàm số theo thứ tự là \(\left| A \right| + B; - \left| A \right| + B\)
b) Khi \(A > 0\) hàm số đạt giá trị lớn nhất tại \(x = {1 \over \omega }\left( {{\pi \over 2} - \alpha } \right) + k{{2\pi } \over \omega },k \in Z\)
Giải
Advertisements (Quảng cáo)
a) Giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \sin u\) là 1 và -1, nên dễ thấy giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = A\sin \left( {\omega x + \alpha } \right) + B\) là \(\left| A \right| + B\) và \( - \left| A \right| + B\)
b) Khi \(A > 0,\) hàm số \(y = A\sin \left( {\omega x + \alpha } \right) + B\) đạt giá trị lớn nhất tại x mà \(\omega x + \alpha = {\pi \over 2} + k2\pi ,\) tức là \(x = {1 \over \omega }\left( {{\pi \over 2} - \alpha } \right) + k{{2\pi } \over \omega },k \in Z\).