Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 1.5 trang 7 SBT Đại Số – Giải tích Nâng cao...

Câu 1.5 trang 7 SBT Đại Số - Giải tích Nâng cao lớp 11...

Câu 1.5 trang 7 sách bài tập Đại số và Giải tích 11 Nâng cao. Chứng minh rằng số T thỏa mãn \(\sin \left( {x + T} \right) = \sin x\) với mọi \(x \in R\) phải có dạng \(T = k2\pi ,\) k. Bài 1: Các hàm số lượng giác

Chứng minh rằng số T thỏa mãn \(\sin \left( {x + T} \right) = \sin x\) với mọi \(x \in R\) phải có dạng \(T = k2\pi ,\) k là một số nguyên nào đó. Từ đó suy ra số T dương nhỏ nhất thỏa mãn \(\sin \left( {x + T} \right) = \sin x\) với mọi \(x \in R\) là \(2\pi \) (tức là hàm số \(y = \sin x\) là hàm số tuần hoàn với chu kì \(2\pi \)).

 Giải

Nếu \(\sin (x + T) = \sin x\) với mọi \(x\) , thì khi \(x = {\pi  \over 2}\) ta được \(\sin \left( {{\pi  \over 2} + T} \right) = 1\) . Số \(U\) mà \(\sin U = 1\) phải có dạng \(U = {\pi  \over 2} + k2\pi ,k\) là số nguyên nào đó , nên

                                \({\pi  \over 2} + T = {\pi  \over 2}k2\pi \)

Advertisements (Quảng cáo)

Vậy \(T = k2\pi \)

Ngược lại, dễ thấy rằng với mọi số nguyên \(k\) thì \(\sin (x + k2\pi ) = \sin x\) với mọi \(x\).

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)