Một cấp số cộng có 7 số hạng mà tổng của số hạng thứ ba và số hạng thứ năm bằng 28, tổng của số hạng thứ năm và số hạng cuối bằng 140. Hãy tìm cấp số cộng đó.
Với mỗi \(n \in \left\{ {1,2,3,4,5,6,7} \right\},\) kí hiệu \({u_n}\) là số hạng thứ \(n\) của cấp số cộng cần tìm. Theo giả thiết của bài ra, ta có \({u_3} + {u_5} = 28\) và \({u_5} + {u_7} = 140.\)Từ đó
\(\left. \matrix{
2{u_4} = 28 \Rightarrow {u_4} = 14 \hfill \cr
2{u_6} = 140 \Rightarrow {u_6} = 70 \hfill \cr} \right\} \)
Advertisements (Quảng cáo)
\(\Rightarrow 2{u_5} = {u_4} + {u_6} = 14 + 70 = 84 \Rightarrow {u_5} = 42.\)
Suy ra
\(\eqalign{
& {u_7} = 140 - {u_5} = 140 - 42 = 98 \cr
& {u_3} = 28 - {u_5} = 28 - 42 = - 14 \cr
& {u_2} = 2{u_3} - {u_4} = 2.( - 14) - 14 = - 42 \cr
& {u_1} = 2{u_2} - {u_3} = 2.( - 42) - ( - 14) = - 70. \cr} \)
Vậy, cấp số cộng cần tìm là : \( - 70, - 42, - 14,14,42,70,98.\)