Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 3.48 trang 93 sách bài tập Đại số và Giải tích...

Câu 3.48 trang 93 sách bài tập Đại số và Giải tích 11 Nâng cao: Xét dãy số...

Xét dãy số. Câu 3.48 trang 93 sách bài tập Đại số và Giải tích 11 Nâng cao - Bài 4. Cấp số nhân

Xét dãy số \(({u_n})\) xác định bởi \({u_1} = a\) và \({u_{n + 1}} = {{12} \over {{u_n}}}\) với mọi \(n \ge 1,\) trong đó a là một số thực khác 0.

Hãy xác định tất cả các giá trị của a để dãy số \(({u_n})\) là một cấp số nhân.

Từ giả thiết \(a \ne 0\) dễ dàng suy ra \({u_n} \ne 0\) với mọi \(n \ge 1.\)

Từ hệ thức xác định dãy số \(({u_n})\) suy ra tất cả các số hạng của dãy số đó có cùng một loại dấu.

Giả sử \(({u_n})\) là một cấp số nhân. Khi đó, tồn tại một hằng số \(q > 0\) sao cho

                      \({u_{n + 1}} = {u_n}.q\) với mọi \(n \ge 1\)     (1)

Từ (1) và hệ thức xác định dãy số \(({u_n})\) suy ra

                      \(u_n^2 = {{12} \over q}\) với mọi \(n \ge 1\)    (2)

Xét hai trường hợp sau:

Advertisements (Quảng cáo)

- Trường hợp 1: \(a > 0.\) Khi đó, ta có \({u_n} > 0\) với mọi \(n \ge 1.\) Vì thế, từ (2) ta được

                                \({u_n} = {{2\sqrt 3 } \over {\sqrt q }}\) với mọi \(n \ge 1.\)

Hay \(({u_n})\) là một dãy số không đổi. Do vậy, phải có \({u_2} = a\) hay \({{12} \over a} = a.\) Dẫn tới \(a = 2\sqrt 3 \)

- Trường hợp 2: \(a < 0.\) Khi đó, ta có \({u_n} < 0\) với mọi \(n \ge 1.\) Vì thế, từ (2) ta được

                                \({u_n} =  - {{2\sqrt 3 } \over {\sqrt q }}\) với mọi \(n \ge 1.\)

Hay \(({u_n})\) là một dãy số không đổi. Do vậy, phải có \({u_2} = a\) hay \({{12} \over a} = a.\) Dẫn tới \(a =  - 2\sqrt 3 \)

Ngược lại:

- Với \(a = 2\sqrt 3 \) dễ dàng chứng minh được \({u_n} = 2\sqrt 3 \) với mọi \(n \ge 1.\) Do đó, dãy số \(({u_n})\) là một cấp số nhân với công bộ \(q = 1\)

- Với \(a =  - 2\sqrt 3 \) dễ dàng chứng minh được \({u_n} =  - 2\sqrt 3 \) với mọi \(n \ge 1.\) Do đó, dãy số \(({u_n})\) là một cấp số nhân với công bộ \(q = 1\)

Tóm lại, tất cả các giá trị a cần tìm là \(a = 2\sqrt 3 \) và \(a =  - 2\sqrt 3 \).

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)