Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 3.50 trang 93 SBT Toán Đại số lớp 11 Nâng cao:...

Câu 3.50 trang 93 SBT Toán Đại số lớp 11 Nâng cao: Một cấp số nhân có 7 số hạng với số hạng đầu và cộng...

Một cấp số nhân có 7 số hạng với số hạng đầu và cộng bội là số âm. Biết rằng tích của số hạng thứ ba và số hạng số hạng thứ năm bằng 6. Hãy tìm các số hạng còn lại của cấp số nhân đó.. Câu 3.50 trang 93 sách bài tập Đại số và Giải tích 11 Nâng cao - Bài 4. Cấp số nhân

Một cấp số nhân có 7 số hạng với số hạng đầu và cộng bội là các số âm. Biết rằng tích của số hạng thứ ba và số hạng số hạng thứ năm bằng 5184, tích của số hạng thứ năm và số hạng cuối bằng 746496. Hãy tìm cấp số nhân đó.

Với mỗi \(n \in \left\{ {1,2,3,4,5,6,7} \right\},\) kí hiệu \({u_n}\) là số hạng thứ n của cấp số nhân cần tìm. Theo giả thiết ta có

               \({u_3}.{u_5} = 5184\) và  \({u_5}.{u_7} = 746496\)

Vì cấp số nhân đã cho có số hạng đầu và công bội là các số âm nên

\({u_1} < 0,{u_2} > 0,{u_3} < 0,{u_4} > 0,\)

\({u_5} < 0,{u_6} > 0,{u_7} < 0\)

Từ đó

\(\left. \matrix{
u_4^2 = 5182 \Rightarrow {u_4} = 72 \hfill \cr
u_6^2 = 746496 \Rightarrow {u_6} = 864 \hfill \cr} \right\}\)

Advertisements (Quảng cáo)

\(\Rightarrow u_5^2 = {u_4}.{u_6} = 72 \times 864 = 62208 \)

\(\Rightarrow {u_5} = - 144\sqrt 3 \)

Suy ra

                                \({u_7} = {{746496} \over { - 144\sqrt 3 }} =  - 1728\sqrt 3 \)

                                \({u_3} = {{5184} \over { - 144\sqrt 3 }} =  - 12\sqrt 3 \)

                                \({u_2} = {{u_3^2} \over {{u_4}}} = {{432} \over {72}} = 6\)

                                \({u_1} = {{u_2^2} \over {{u_3}}} = {{36} \over { - 12\sqrt 3 }} =  - \sqrt 3 \)

Vậy cấp số nhân cần tìm là: \( - \sqrt 3 ,6, - 12\sqrt 3 ,72, - 144\sqrt 3 ,864, - 1728\sqrt 3 \)

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)