Cho dãy số \(({u_n})\) xác định bởi \({u_1} = 1\) và \({u_{n + 1}} = \sqrt {u_n^2 + 2} \) với mọi \(n \ge 1.\)
a) Chứng minh rằng dãy số \(({u_n})\), mà \({v_n} = u_n^2\) với mọi \(n \ge 1,\) là một cấp số cộng. Hãy xác định số hạng đầu và công sai của cấp số cộng đó.
b) Hãy xác định số hạng tổng quát của dãy số \(({u_n})\).
c) Tính tổng \(S = u_1^2 + u_2^2 + u_3^2 + .... + u_{1001}^2.\)
a) Từ hệ thức xác định dãy số \(({u_n})\) suy ra với mọi \(n \ge 1\)
\(u_{n + 1}^2 = u_n^2 + 2,\) hay \({v_{n + 1}} = {v_n} + 2.\)
Advertisements (Quảng cáo)
Do đó, dãy số \(({v_n})\) là một cấp số cộng với số hạng đầu \({v_1} = u_1^2 = 1\) và công sai \(d = 2.\)
b) Từ định nghĩa dãy số \(({u_n})\) và dãy số \(({v_n})\) dễ dàng suy ra \({u_n} > 0\) và \({v_n} > 0\) với mọi \(n \ge 1.\) Từ đó, ta có \({u_n} = \sqrt {{v_n}} \) với mọi \(n \ge 1.\)
Từ kết quả phần a) suy ra : \({v_n} = 1 + \left( {n - 1} \right).2 = 2n - 1\,\,\,\,\,\,\,\,\left( {\forall n \ge 1} \right).\) Vì thế
\({u_n} = \sqrt {2n - 1} \,\,\,\,\,\,\,\,\,\,\,(\forall n \ge 1).\)
c) \(S = u_1^2 + u_2^2 + u_3^2 + .... + u_{1001}^2\)
\( = {v_1} + {v_2} + {v_3} + ... + {v_{1001}} \)
\(= {{1001.\left( {2.1 + \left( {1001 - 1} \right).2} \right)} \over 2} = 1002001.\)