Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 3 trang 114 Sách bài tập Hình học 11 Nâng cao...

Câu 3 trang 114 Sách bài tập Hình học 11 Nâng cao : Chứng minh rằng bốn điểm A, I, J, K cùng thuộc một mặt phẳng...

Câu 3 trang 114 Sách bài tập Hình học 11 Nâng cao. Vậy \(\overrightarrow {AI} ,\overrightarrow {AJ} ,\overrightarrow {AK} \) đồng phẳng, tức là các điểm A, I, J, K cùng thuộc một mặt phẳng.. Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ

Cho hình lăng trụ ABC. A’B’C’. Gọi I và J lần lượt là trung điểm của BB’ và A’C’. Điểm K thuộc B’C’ sao cho \(\overrightarrow {KC’}  =  - 2\overrightarrow {KB’} \) . Chứng minh rằng bốn điểm A, I, J, K cùng thuộc một mặt phẳng.

 

Đặt \(\overrightarrow {AA’}  = \overrightarrow a ,\overrightarrow {AB}  = \overrightarrow b ,\overrightarrow {AC}  = \overrightarrow c .\)

Ta có:

Advertisements (Quảng cáo)

\(\eqalign{  & \overrightarrow {AI}  = {1 \over 2}\left( {\overrightarrow {AB}  + \overrightarrow {AB’} } \right)  \cr  &  = {1 \over 2}\left( {\overrightarrow b  + \overrightarrow a  + \overrightarrow b } \right)  \cr  &  = {1 \over 2}\left( {\overrightarrow a  + 2\overrightarrow b } \right);\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)  \cr  & \overrightarrow {AJ}  = {1 \over 2}\left( {\overrightarrow {AA’}  + \overrightarrow {AC’} } \right)  \cr  &  = {1 \over 2}\left( {\overrightarrow a  + \overrightarrow a  + \overrightarrow c } \right)  \cr  &  = {1 \over 2}\left( {2\overrightarrow a  + \overrightarrow c } \right).\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)  \cr  & \overrightarrow {AK}  = {{\overrightarrow {AC’}  + 2\overrightarrow {AB’} } \over 3}  \cr  &  = {{\overrightarrow a  + \overrightarrow c  + 2\left( {\overrightarrow a  + \overrightarrow b } \right)} \over 3}  \cr  &  = {{3\overrightarrow a  + 2\overrightarrow b  + \overrightarrow c } \over 3}.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right) \cr} \)

Từ (1), (2), (3) ta có \(\overrightarrow {AK}  = {2 \over 3}\left( {\overrightarrow {AI}  + \overrightarrow {AJ} } \right)\)

Vậy \(\overrightarrow {AI} ,\overrightarrow {AJ} ,\overrightarrow {AK} \) đồng phẳng, tức là các điểm A, I, J, K cùng thuộc một mặt phẳng.

Chú ý: Có thể chứng minh các điểm A, I, J, K thuộc một mặt phẳng bằng cách chứng minh AI và JK cắt nhau tại điểm M.

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)