Cho khối lập phương ABCD.A’B’C’D’ cạnh a. Các điểm E và F lần lượt là trung điểm của C’B’ và C’D’.
a) Dựng thiết diện của khối lập phương khi cắt bởi \(mp\left( {AEF} \right).\)
b) Tính tỉ số thể tích hai phần của khối lập phương bị chia bởi mặt phẳng \(\left( {AEF} \right).\)
a) Đường thẳng EF cắt A’D’ tại N, cắt A’B’ tại M, AN cắt DD’ tại P, AM cắt BB’ tại Q. Vậy thiết diện là ngũ giác APFEQ.
Advertisements (Quảng cáo)
b) Đặt :
\(\eqalign{ & V = {V_{ABCD.A’B’C’D’}}, \cr & {V_1} = {V_{ABCDC’QEFP}}, \cr & {V_2} = {V_{AQEFP.B’A’D’}}, \cr & {V_3} = {V_{A.MA’N}}, \cr & {V_4} = {V_{PFD’N}},{V_5} = {V_{QMB’E}}. \cr} \)
Dễ thấy \({V_4} = {V_5}\) ( do tính đối xứng của hình lập phương),
\(\eqalign{ & {V_3} = {1 \over 6}AA’.A’M.A’N = {1 \over 6}a.{{3a} \over 2}.{{3a} \over 2} = {{3{a^3}} \over 8}, \cr & {V_4} = {1 \over 6}PD’.D’F.D’N = {1 \over 6}.{a \over 3}.{a \over 2} .{a \over 2} = {{{a^3}} \over {72}}, \cr & {V_2} = {V_3} - 2{V_4} = {{3{a^3}} \over 8} - {{2{a^3}} \over {72}} = {{25{a^3}} \over {72}}, \cr & {V_1} = V - {V_2} = {a^3} - {{25{a^3}} \over {72}} = {{47} \over {72}}{a^3}. \cr} \)
Mặt phẳng \(\left( {AEF} \right)\) chia khối lập phương thành hai phần lần lượt có thể tích là \({V_1} = {{47} \over {72}}{a^3},{V_2} = {{25{a^3}} \over {72}}.\)
Vậy : \({{{V_1}} \over {{V_2}}} = {{47} \over {25}}.\)