Trang chủ Lớp 12 SBT Toán 12 Nâng cao (sách cũ) Bài 51 trang 12 SBT Hình 12 Nâng Cao: Chứng minh rằng...

Bài 51 trang 12 SBT Hình 12 Nâng Cao: Chứng minh rằng tổng các khoảng cách...

Chứng minh rằng tổng các khoảng cách . Bài 51 trang 12 Sách bài tập Hình học lớp 12 Nâng cao - Bài 4. Thể tích của khối đa diện

Chứng minh rằng tổng các khoảng cách từ một điểm nằm trong một hình lăng trụ đều đến các mặt của nó không phụ thuộc vào vị trí của điểm nằm trong hình lăng trụ đó.

Gọi hình lăng trụ đều đã cho là H. Khi đó, dễ thấy tổng các khoảng cách từ một điểm nằm trong H đến hai mặt đáy của nó luôn bằng chiều cao h của H.

Giả sử I là một điểm trong nào đó của H . Dựng qua I một mặt phẳng \(\left( P \right)\) vuông góc với cạnh bên của H, ta được thiết diện thẳng A1A2…An của H. Khi đó, A1A2…Alà một đa giác đều bằng đa giác đáy của H (do H là lăng trụ đều).

Advertisements (Quảng cáo)

Từ I ta kẻ đường \(I{H_1} \bot {A_1}{A_2},I{H_2} \bot {A_2}{A_3},..I{H_n} \bot {A_n}{A_1}.\)

Do thiết diện thẳng vuông góc với các mặt bên nên từ đó dễ dàng suy ra : \(I{H_1},I{H_2},..I{H_n}\) lần lượt vuông góc với các mặt bên của hình lăng trụ . Đặt \(I{H_1} = {h_1},I{H_2} = {h_2},..I{H_n} = {h_n}\) và a là độ dài cạnh đáy của lăng trụ. Gọi S là diện tích một mặt đáy thì S cũng là diện tích của A1A2…An. Vậy

\(\eqalign{  & S = {1 \over 2}a{h_1} + {1 \over 2}a{h_2} + ... + {1 \over 2}a{h_n} \cr&\;\;\;= {1 \over 2}a({h_1} + {h_2} + ... + {h_n})  \cr  &  \Rightarrow {h_1} + {h_2} + ... + {h_n} = {{2S} \over a}. \cr} \)

Vậy tổng các khoảng từ I đến các mặt của lăng trụ là không đổi. Tổng này bằng \(h+{{2S} \over a}.\)

Bạn đang xem bài tập, chương trình học môn SBT Toán 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)