Trang chủ Lớp 7 Tài liệu Dạy - Học Toán 7 (sách cũ) Bài tập 36 trang 98 Tài liệu dạy – học Toán 7...

Bài tập 36 trang 98 Tài liệu dạy – học Toán 7 tập 2, Cho tam giác ABC vuông tại A, BD là phân giác của góc ABC (D thuộc AC)....

Luyện tập - Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác - Bài tập 36 trang 98 Tài liệu dạy – học Toán 7 tập 2. Giải bài tập Cho tam giác ABC vuông tại A, BD là phân giác của góc ABC (D thuộc AC).

Cho tam giác ABC vuông tại A, BD là phân giác của góc ABC (D thuộc AC).

Trên nửa mặt phẳng bờ AC không chứa điểm B, qua điểm C vẽ tia Cx vuông góc với CA và cắt tia BD tại E. Chứng minh chu vi tam giác ADB nhỏ hơn chu vi tam giác CDE.

 

∆ABC vuông tại A. Ta có \(AB \bot AC\) tại A => AB < BC

Trên cạnh BC lấy điểm M sao cho BM = AB

Xét ∆MBD và ∆ABD có: \(\widehat {MBD} = \widehat {ABD}\) (BD là đường phân giác)

MB = AB

BD (cạnh chung)

Do đó ∆MBD = ∆ABD (c.g.c) \( \Rightarrow \widehat {BMD} = \widehat {BAD} = 90^\circ ,AD = MD\)

\(DM \bot BC\) tại M => DM < CD. Nên AD < CD

Advertisements (Quảng cáo)

Mặt khác

\(AB \bot AC,EC \bot AC\)

\( \Rightarrow AB//EC \Rightarrow \widehat {CEB} = \widehat {ABD}\) (so le trong)

Ta có \(\widehat {CEB} = \widehat {MBD}( = \widehat {ABD)}\) => ∆CBE cân tại C => BC = CE

Nên AB < BC = CE

∆ABD vuông tại A => BD2 = AD2 + AB2 (định lí Pythagore)

∆CDE vuông tại E => DE2 = CD2 + CE2

Mà AD < CD và AB < CE. Do đó

BD2 < DE2 => BD < DE

Ta có AD + AB + BD < CD + CE + DE

Vậy chu vi tam giác ADB nhỏ hơn chu vi tam giác CDE.

Bạn đang xem bài tập, chương trình học môn Tài liệu Dạy - Học Toán 7 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)