Trang chủ Lớp 8 SBT Toán 8 - Cánh diều Bài 35 trang 103 SBT Toán 8 – Cánh diều: Cho hình...

Bài 35 trang 103 SBT Toán 8 - Cánh diều: Cho hình vuông \(ABCD\) có \(AB = 12cm\). Trên cạnh \(CD\) lấy điểm \(E\) sao cho \(DE = 5cm\)...

Trong một hình vuông, - Các cạnh đối song song - Hai đường chéo bằng nhau, vuông góc với nhau và cắt nhau tại trung điểm của mỗi đường. Trả lời bài 35 trang 103 sách bài tập (SBT) toán 8 - Cánh diều - Bài 7. Hình vuông. Cho hình vuông \(ABCD\) có \(AB = 12cm\). Trên cạnh \(CD\) lấy điểm \(E\) sao cho \(DE = 5cm\)....

Question - Câu hỏi/Đề bài

Cho hình vuông \(ABCD\) có \(AB = 12cm\). Trên cạnh \(CD\) lấy điểm \(E\) sao cho \(DE = 5cm\). Tia phân giác của góc \(BAE\) cắt \(BC\) tại \(F\). Trên tia đối của tia \(BC\) lấy điểm \(M\) sao cho \(BM = DE\).

a) Chứng minh \(AE = AM = DE\)

b) Tính độ dài \(BF\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Trong một hình vuông,

- Các cạnh đối song song

- Hai đường chéo bằng nhau, vuông góc với nhau và cắt nhau tại trung điểm của mỗi đường.

- Hai đường chéo là các đường phân giác của các góc ở đỉnh.

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

a) \(\Delta ADE = \Delta ABM\)(c.g.c)

Suy ra \(AE = AM\) và \(\widehat {DAE} = \widehat {BAM}\).

Do \(AF\) là tia phân giác của \(\widehat {BAE}\) nên \(\widehat {EAF} = \widehat {BAF}\).

Suy ra \(\widehat {DAE} + \widehat {EAF} = \widehat {BAM} + \widehat {BAF}\) hay \(\widehat {DAF} = \widehat {MAF}\).

Mà \(\widehat {DAF} = \widehat {MFA}\) (hai góc so le trong) , suy ra \(\widehat {MFA} = \widehat {MAF}\)

Do đó, tam giác \(MAF\) cân tại \(M\). Suy ra \(AM = FM\)

Mà \(AE = AM\), suy ra \(AE = AM = FM\).

b) Trong tam giác \(ADE\) vuông tại \(D\), ta có: \(A{E^2} = A{D^2} + D{E^2}\)

Suy ra \(AE = 13cm\). Mà \(FM = AE\), suy ra \(FM = 13cm\).

Ta có: \(FM = BM + BF\). Mà \(BM = DE = 5cm\) và \(FM = 13cm\), suy ra \(BF = 8cm\).

Advertisements (Quảng cáo)