Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Bài 44 trang 107 SBT Hình 10 nâng cao: Bán kính đường...

Bài 44 trang 107 SBT Hình 10 nâng cao: Bán kính đường tròn :...

Bài 44 trang 107 SBT Hình học 10 Nâng cao. Phương trình đường tròn ngoại tiếp tam giác \(ABC\) là. Bài 4. Đường tròn.

Viết phương trình đường tròn ngoại tiếp tam giác \(ABC\) biết \(A=(1 ; 3),\) \( B=(5 ; 6),\) \( C=(7 ; 0).\)

Gọi \(I(x,y)\) là tâm đường tròn ngoại tiếp tam giác \(ABC\). Ta có

\(\begin{array}{l}IA = IB = IC    \Leftrightarrow    \left\{ \begin{array}{l}I{A^2} + I{B^2}\\I{A^2} = I{C^2}\end{array} \right.\\\Leftrightarrow      \left\{ \begin{array}{l}{(x - 1)^2} + {(y - 3)^2} = {(x - 5)^2} + {(y - 6)^2}\\{(x - 1)^2} + {(y - 3)^2} = {(x - 7)^2} + {y^2}\end{array} \right.\\\Leftrightarrow    \left\{ \begin{array}{l}8x + 6y = 51\\12x - 6y = 39\end{array} \right.      \Leftrightarrow    \left\{ \begin{array}{l}x =  \dfrac{9}{2}\\y =  \dfrac{5}{2}\end{array} \right.    \\ \Rightarrow    I = \left( { \dfrac{9}{2} ;  \dfrac{5}{2}} \right)\end{array}\)

Bán kính đường tròn :

\(R = IA\)

Advertisements (Quảng cáo)

\(= \sqrt {{{\left( { \dfrac{9}{2} - 1} \right)}^2} + {{\left( { \dfrac{5}{2} - 3} \right)}^2}} \)

\(=  \dfrac{{5\sqrt 2 }}{2}\).

Phương trình đường tròn ngoại tiếp tam giác \(ABC\) là

\({\left( {x -  \dfrac{9}{2}} \right)^2} + {\left( {y - {{ \dfrac{5}{2}}^{}}} \right)^2} =  \dfrac{{25}}{2}\).

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)