Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Bài 47 trang 107 SBT Hình học 10 Nâng cao: (h.104).

Bài 47 trang 107 SBT Hình học 10 Nâng cao: (h.104)....

Bài 47 trang 107 SBT Hình học 10 Nâng cao. Giải. Bài 4. Đường tròn.

Cho ba điểm \(A(-1 ; 0), B(2 ; 4), C(4 ; 1).\)

a) Chứng minh rằng tập hợp các điểm \(M\) thỏa mãn \(3M{A^2} + M{B^2} = 2M{C^2}\) là một đường tròn \((C)\). Tìm tọa độ tâm và bán kính của \((C)\).

b) Một đường thẳng \(\Delta \) thay đổi đi qua \(A\) cắt \((C)\) tại \(M\) và \(N\). Hãy viết phương trình của \(\Delta \) sao cho đoạn \(MN\) ngắn nhất.

a) Xét điểm \(M(x ; y)\). Biến đổi điều kiện \(3M{A^2} + M{B^2} = 2M{C^2}\)qua tọa độ ta được phương trình đường tròn cần tìm  \((C): {\left( {x +  \dfrac{9}{2}} \right)^2} + {\left( {y - 1} \right)^2} =  \dfrac{{107}}{4}\), \((C)\) có tâm \(I\left( { -  \dfrac{9}{2} ; 1} \right)\), bán kính \(R =  \dfrac{{\sqrt {107} }}{2}\).

b) (h.104).

Advertisements (Quảng cáo)

\(IA < R\) nên \(A\) trong \((C)\). Gọi \(H\) là trung điểm của \(MN\) thì \(IH \bot MN\).

\(MN = 2MH = 2\sqrt {{R^2} - I{H^2}} \).

Do đó \(MN\) min \( \Leftrightarrow IH\) max.

Ta luôn có \(IH \le IA\). Vậy \(IH\) max  \( \Leftrightarrow   H \equiv A\), tức là \(\overrightarrow {IA}  = \left( { \dfrac{7}{2} ;  - 1} \right)\) là  một vectơ pháp tuyến của đường thẳng \(\Delta \) cần tìm. Từ đó suy ra phương trình của \(\Delta \) là \(7x - 2y + 7 = 0\).

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)