Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Bài 64 trang 48 SBT Hình 10 nâng cao: Mặt khác

Bài 64 trang 48 SBT Hình 10 nâng cao: Mặt khác...

Bài 64 trang 48 SBT Hình học 10 Nâng cao. Giải. Bài 3. Hệ thức lượng trong tam giác.

Chứng minh rằng khoảng cách d từ trọng tâm tam giác \(ABC\) đến tâm đường tròn ngoại tiếp của tam giác đó thỏa mãn hệ thức:

\({R^2} - {d^2} = \dfrac{{{a^2} + {b^2} + {c^2}}}{9}.\)

Giải

Giả sử tam giác \(ABC\) nội tiếp trong đường tròn tâm \(O\) và có trọng tâm \(G\). Ta có

\(\begin{array}{l}{\overrightarrow {OA} ^2} + {\overrightarrow {OB} ^2} + {\overrightarrow {OC} ^2}\\ = {\left( {\overrightarrow {GA}  - \overrightarrow {GO} } \right)^2} + {\left( {\overrightarrow {GB}  - \overrightarrow {GO} } \right)^2} + {\left( {\overrightarrow {GC}  - \overrightarrow {GO} } \right)^2}\\                                        = {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2} - 2\overrightarrow {GO} \left( {\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC} } \right) + 3{\overrightarrow {GO} ^2}\end{array}\)

Advertisements (Quảng cáo)

Do \(OA=OB=OC=R\) và \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \) nên \(3{R^2} = G{A^2} + G{B^2} + G{C^2} + 3{d^2}\).

Mặt khác

\(\begin{array}{l}G{A^2} + G{B^2} + G{C^2} \\= \dfrac{4}{9}\left( {m_a^2 + m_b^2 + m_c^2} \right)\\= \dfrac{4}{9}\left( {\dfrac{{{b^2} + {c^2}}}{2} - \dfrac{{{a^2}}}{4} + \dfrac{{{a^2} + {c^2}}}{2} - \dfrac{{{b^2}}}{4} + \dfrac{{{a^2} + {b^2}}}{2} - \dfrac{{{c^2}}}{4}} \right)\\= \dfrac{{{a^2} + {b^2} + {c^2}}}{3}\end{array}\)

Do đó \(3{R^2} = \dfrac{{{a^2} + {b^2} + {c^2}}}{3} + 3{d^2}\), suy ra  \({R^2} - {d^2} = \dfrac{{{a^2} + {b^2} + {c^2}}}{9}\).

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)