Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Câu 4.1 trang 102 Sách BT Đại số 10 Nâng cao: Khi...

Câu 4.1 trang 102 Sách BT Đại số 10 Nâng cao: Khi nào đẳng thức xảy ra ?...

Câu 4.1 trang 102 SBT Đại số 10 Nâng cao. a. \({a^2} + {b^2} - ab = {\left( {a - \dfrac{b}{2}} \right)^2} + \dfrac{{3{b^2}}}{4} \ge 0\) với mọi a, b ϵ R.. Bài 1. Bất đẳng thức và chứng minh bất đẳng thức

a. Chứng minh rằng \({a^2} + {b^2} - ab \ge 0\) với mọi a, b ∈ R.

Khi nào đẳng thức xảy ra ?

b. Chứng minh rằng nếu a ≥ b thì \({a^3} - {b^3} \ge a{b^2} - {a^2}b\) với mọi a, b ∈ R.

:

a. \({a^2} + {b^2} - ab = {\left( {a - \dfrac{b}{2}} \right)^2} + \dfrac{{3{b^2}}}{4} \ge 0\) với mọi a, b ϵ R.

Advertisements (Quảng cáo)

Dấu bằng xảy ra khi và chỉ khi \(\left\{ {\begin{array}{*{20}{c}}{{{\left( {{\rm{a}} - \dfrac{b}{2}} \right)}^2} = 0}\\{\dfrac{{3{b^2}}}{4} = 0}\end{array}} \right.\,hay\,a = b = 0.\)

b.

\(\begin{array}{l}{a^3} - {b^3} - \left( {{\rm{a}}{b^2} - {a^2}b} \right)\\ = a\left( {{{\rm{a}}^2} - {b^2}} \right) + b\left( {{{\rm{a}}^2} - {b^2}} \right)\\ = \left( {{\rm{a}} + b} \right)\left( {{{\rm{a}}^2} - {b^2}} \right)\\ = \left( {{\rm{a}} - b} \right){\left( {{\rm{a}} + b} \right)^2}.\end{array}\)

Do a ≥ b nên \(\left( {{\rm{a}} - b} \right){\left( {{\rm{a}} + b} \right)^2} \ge 0,\) ta có điều phải chứng minh.

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)