Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Câu 4.16 trang 104 SBT Đại số 10 Nâng cao: Do đó

Câu 4.16 trang 104 SBT Đại số 10 Nâng cao: Do đó...

Câu 4.16 trang 104 SBT Đại số 10 Nâng cao. Lời giải đúng là :. Bài 1. Bất đẳng thức và chứng minh bất đẳng thức

Để chứng minh \(x\left( {1 - x} \right) \le \dfrac{1}{4}\) với mọi x, bạn An đã làm như sau :

Áp dụng bất đẳng thức giữa trung bình cộng và trung bình nhân cho hai số \(x\) và \(1 – x\), ta có

\(\sqrt {{\rm{x}}\left( {1 - x} \right)}  \le \dfrac{{{\rm{x}} + 1 - x}}{2} = \dfrac{1}{2}\)

Do đó

\(x\left( {1 - x} \right) \le \dfrac{1}{4}\)

Theo em, bạn An giải như thế đúng hay sai, vì sao ? Em giải bài này như thế nào ?

:

Bạn An giải như vậy là sai.

Sai lầm của bạn An là không để ý điều kiện của các số a, b trong bất đẳng thức giữa trung bình cộng và trung bình nhân \(\dfrac{{a + b}}{2} \ge \sqrt {{\rm{a}}b} \) là \(a ≥ 0, b ≥ 0\). Trong bài này \(x\) và \(1 – x\) chỉ không âm khi \(x \in \left[ {0;1} \right].\)

Lời giải đúng là :

\(x\left( {1 - x} \right) \le \dfrac{1}{4} \Leftrightarrow  - {x^2} + {\rm{x}} \le \dfrac{1}{4}\)

\(\Leftrightarrow {x^2} - x + \dfrac{1}{4} \ge 0 \Leftrightarrow {\left( {{\rm{x}} - \dfrac{1}{2}} \right)^2} \ge 0,\) bất đẳng thức này hiển nhiên đúng với mọi x.

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: